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Introduction

K field of characteristic zero
for this talk C

W smooth, puredimensional scheme of dimension n
X C W reduced subscheme

Simplest Formulation(non-embedded):
Find a non-singular X and a proper birational morphism

7 X — X

such that Reg(X) = 7~ 1(Reg(X)).
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Introduction

Idea: Replace a point in the plane
by a projective line .

effect: more room for curves to become smooth

in pictures (just 1 chart):
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Technical Formulation:
Desingularization

Find a finite sequence of blowing-ups
rL~--£>W11>W0:W

at smooth centers C; C W; such that

1. exceptional divisors Ej of m o --- 0wy have normal
crossings

2. Ci have 'normal crossings’ with it
3. CkNReg(X)=10

4. strict transform X, of X under m, 0---0mq is
non-singular and has normal crossings with E,

5. (W,, X;) — (W, X) is equivariant under group action
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» Curves: L.Kronecker, M.Noether, A.Brill, ... (1890s)
» Surfaces, local: H.W.Jung (1908)
» Surfaces, global: R.J.Walker (1935)

approaches of more algebraic flavor:
» surfaces/3-folds: O.Zariski (1930s/40s)
» general case: H.Hironaka (1964) for charK =0

recent developments:

» algorithmic proofs: Bierstone+Milman; Villamayor;
Encinas+Hauser (since 1990s)

» implementations: Bodnar+Schicho; FK+Pfister
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For each blowing up step:
A Blowing up of W; along a given center C;

» Groebner basis compuation in at least
(n + codim(C;) + 1) variables
> iterated ideal quotients (=again Groebner bases)
» algorithmically straight forward, not overly expensive

B Finding suitable centers C;

key difficulty: not all permissible centers improve the
situation
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total transform X, ..
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X affine variety, its ideal Ix C K|[xi,...,Xa] Blowing Up
C smooth subvariety of X
(WlOg IC = <f1, ey fk>)

/ k—1.
total transform X, .., C X x P~

can be computed as preimage of Ix under

O Kxt, oy Xn Y1y k] — Kl[x1,..., X, t]
X X

yj — t-f
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X = V(22 = x?y?) C A3

Choices of Center:
» Sing(X) singular = impossible
» V(z,x) is random choice of component = not suitable

» 0 is only possible choice
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'worst’ points are points of maximal value of a governing
invariant =—> upcoming center

Finding Centers

Conditions for a suitable governing invariant:

» maximal locus is closed set (Zariski upper
semicontinuous)

» maximal locus is non-singular and has normal crossing
with exceptional divisors

maximal value does not increase under blowing ups

» decrease of maximal value measures progress of
desingularization
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(invp; inva—1; ... inva)

key point of Hironaka's inductive argument:
descent in dimension of the ambient space ’;

! Finding Centers

general structure of invariant in each dimension
inv,- = (OI‘dW(I,')7 nE(,-))

where

> ng() counts certain exceptional divisors which meet the
point w

» ord,(Z;) is the order of an appropriate ideal in the local
ring at w
(the coefficient ideal in ambient dimension /)

» depending on algorithmic approach inv, can also have
the Hilbert-Samuel function at w as first entry
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Variants in SINGULAR o

Desingularization

Variants of embedded desingularization: A. Friihbis-Kriiger

» variant of Villamayor's Algorithm (available):
+ all dimensions
+ no special conditions on ideal il @iz
- large amount of data
- a number of unproductive blowing ups
» Bierstone-Milman Algorithm (not available):
- stratification by Hilbert-Samuel function slow
- even more data due to further splitting up of charts
» Blanco's variant for binomial ideals (implemented, not
yet in distribution):
+ computation of center by combinatorial process
+ faster, total amount of data smaller
» Jung's algorithm for surfaces (implementation
FK-Renner):
- only for surfaces
+ faster, fewer charts
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result of resolution process represented in charts

— need to extract desired information AerieTtns

vV v v Y

Huge amount of final charts, even larger amount of
intermediate charts

Passing through the tree of charts
Identification of subvarieties in different charts
Identification of exceptional divisors in different charts

Separation of C-irreducible components of exceptional
divisors
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Given 7 : W — C" embedded resolution of V = f~1(0),
E; irreducible components of 7~1(f~1(0))
N; multiplicity of E; in divisor of f o7
vi — 1 multiplicity of E; in divisor of 7*(dxy A -+ A dx,) Applications

Currently available:

» intersection form of exceptional curves on desingularized
surface

» dual graph of resolution (surface case)
» discrepancies a; = v; — N;

» topological zeta function (global and local)

o 1
Ziop,£(s) = ZX(E/ )H Nst o
I iel ! !
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