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The Main Results: Two-tree Mixtures

Theorem

The tree parameters of the phylogenetic mixture model
MT1 ∗MT2 are generically identifiable under the Jukes-Cantor and
Kimura 2-parameter models if T1,T2 are trivalent with n ≥ 4
leaves.

Theorem*

The continuous parameters of the phylogenetic mixture model
MT1 ∗MT2 are generically identifiable under the Jukes-Cantor and
Kimura 2-parameter models if T1,T2 are trivalent with n ≥ 5
leaves.
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Phylogenetic Models

Let T be a trivalent tree with n leaves. Leaves are labeled by
[n] := {1, 2, 3, . . . , n}.
Associated to each edge of tree e is a Markov (structured)
transition matrix Me .
Once we specify T , and the Me , get a probability distribution of
characters at the leaves of the tree.

Prob(i , j , k) =
4∑

l=1

4∑
m=1

rlM1(l ,m)M2(m, i)M3(m, j)M4(l , k)

Allman, Petrović, Rhodes, and Sullivant Identifiability of Phylogenetic Mixture Models



Think of phylogenetic model as a map

φT : Θ ⊆ Rk → ∆4n

Given by polynomials:
MT := imφT = φT (Θ), is the phylogenetic model.
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Phylogenetic Mixture Models

Suppose there are k classes of sites in the genome.
Each class j ∈ [k] evolved according to tree Tj on n leaves.
Assuming that the classes are hidden, we observe a probability
distribution of the form:

φT1,...,Tk
(π, {Me}) = π1 ·φT1 ({M1

e })+π2 ·φT2 ({M2
e })+· · ·+πk ·φTk

({Mk
e })

where πj is the relative proportion of sites of class j .

Definition

Let T1, . . . ,Tk be trees with n leaves. The phylogenetic mixture
model

MT1∗MT2∗· · ·∗MTk
=


k∑

j=1

πjp
j : πj ≥ 0,

∑
πj = 1, pj ∈MTj

 .
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Why Mixture Models?

Differing gene tree topologies

Could explain evolution with recombination
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Group-based Models

For remainder we focus on group-based models. Phylogenetic
models with structured transition matrices.(

α β
β α

) 
α β β β
β α β β
β β α β
β β β α



α β γ γ
β α γ γ
γ γ α β
γ γ β α



α β γ δ
β α δ γ
γ δ α β
δ γ β α


Cavender-Farris-Neyman (CFN), Jukes-Cantor (JC), Kimura
2-Parameter (K2P), Kimura 3-Parameter (K3P)
Transition structure is governed by a finite Abelian group G , such
that

Me(g , h) = fe(g − h).

Theorem (Evans-Speed 1993, Hendy-Penny 1993)

Group-based models can be diagonalized by means of the discrete
Fourier transform over G (Hadamard conjugation). In the Fourier
coordinates, group-based models are toric varieties.
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Fourier Coordinates

For each split A|B in tree introduce a set of Fourier parameters

{aA|B
g : g ∈ G}.

Theorem (Evans-Speed 1993, Hendy-Penny 1993)

In the Fourier coordinates, a group-based phylogenetic model is
given parameterically by:

qg1,...,gn =

{ ∏
A|B∈Σ(T ) a

A|BP
a∈A ga

if g1 + · · ·+ gn = 0

0 if g1 + · · ·+ gn 6= 0

In the JC, K2P, K3P, we take G = Z2 × Z2 = {A,C ,G ,T}.
In the K2P model, we have a

A|B
G = a

A|B
T for all A|B

In the JC model, we have a
A|B
C = a

A|B
G = a

A|B
T for all A|B.
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Doodles for Group-Based Models

qCCTGC = a1
C a2

C a3
T a4

G a5
C a

12|345
A a

123|45
T

1

2 5

4

3

qCGTAqACTG = qCGCG qATTA

=

x

x

1

2 4

3 1

2 4

3

1

2 4

3 1

2 4

3
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The Identifiability Problem

Definition

The tree parameters T1, . . . ,Tk in a k-class phylogenetic mixture
model are identifiable if for all

p ∈MT1 ∗ · · · ∗MTk

there does not exist another set of k trees T ′1, . . . ,T
′
k such that

p ∈MT ′
1
∗ · · · ∗MT ′

k
.
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Generic Identifiability

Definition

The tree parameters in a k-class phylogenetic mixture model are
generically identifiable if for all nonequal multisets T1, . . . ,Tk , and
T ′1, . . . ,T

′
k ,

dim(MT1 ∗ · · · ∗MTk
∩MT ′

1
∗ · · · ∗MT ′

k
) < dim(MT1 ∗ · · · ∗MTk

).
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Generic Identifiability of Continuous Parameters

Definition

Fix trees T1, . . . ,Tk on n leaves. The continuous parameters of
phylogenetic mixture model are generically identifiable if φT1,...,Tk

is one-to-one (off of a set of measure zero (up to label swapping)).

Generic Identifiability of Continuous Parameters

Definition

Fix trees T1, . . . ,Tk on n leaves. The continuous parameters of
phylogenetic mixture model are generically identifiable if

φT1,...,Tk is one-to-one (off of a set of measure zero (up to label
swapping)).

T1

T2
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Past Work on Identifiability of Tree Mixtures

Identifiability Results:

Allman and Rhodes (2006) T1 = . . . = Tk , k < n.
Stefankovic and Vigoda (2007) T1 = . . . = Tk , JC, K2P
Matsen, Mossel, and Steel (2008)

Non-Identifiability Results:

Matsen and Steel (2007)
Stefankovic and Vigoda (2007)
Mossel and Vigoda (2005)
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Algebraic Methods for Proving Identifiability

Proposition

Let M0 and M1 be two algebraic models. If there exist
polynomials f0 and f1 such that

fi (p) = 0 for all p ∈Mi , and fi (p) 6= 0 for some p ∈M1−i , then

dim(M0 ∩M1) < min(dimM0, dimM1).

Proposition

Let M0 and M1 be two algebraic models. If there is a polynomial
f0 such that

f0(p) = 0 for all p ∈M0, and f0(p) 6= 0 for some p ∈M1, and

dimM1 ≤ dimM0 then

dim(M0 ∩M1) < min(dimM0, dimM1).
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Proof of Tree Parameter Identifiability

Theorem

The tree parameters of the phylogenetic mixture model
MT1 ∗MT2 are generically identifiable under the Jukes-Cantor and
Kimura 2-parameter models if T1,T2 are trivalent with n ≥ 4
leaves.

Strategy: Prove theorem for quartets n = 4 (using linear
invariants), then lift to arbitrary sized trees:

Proposition

Let T1,T2,T3,T4 be n leaf trivalent trees. Suppose that there is a
four element set Q ⊆ [n] such that {T1|Q ,T2|Q} 6= {T3|Q ,T4|Q}.
Then

dim(MT1 ∗MT2 ∩MT3 ∗MT4) < dim(MT1 ∗MT2).
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From Six to Infinity

Proposition

There are no quartet-matched pairs of trees with 5 leaves. The
only pair of quartet-matched pairs of trees on 6 leaves are:

1

2

5

43

6

T1

1

3

4

52

6

T2

1

3

5

42

6

T3

1

2

4

53

6

T4

Proposition

There are linear invariants that distinguish T1,T2 from T3,T4.

Theorem (Matsen, Mossel, Steel 2007)

If two-tree mixtures are identifiable for trivalent trees with n = 6
trees, they are identifiable for all trees with n ≥ 6 leaves.
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Identifiability of Continuous Parameters

Theorem*

The continuous parameters of the phylogenetic mixture model
MT1 ∗MT2 are generically identifiable under the Jukes-Cantor and
Kimura 2-parameter models if T1,T2 are trivalent with n ≥ 5
leaves.


α β β β
β α β β
β β α β
β β β α



α β γ γ
β α γ γ
γ γ α β
γ γ β α


Definition

Theorem* means that the result holds with high probability.
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Proposition

Let φ : Cd → Cm be a rational map. Then there is a Zariski open
set Θ ⊆ Cd , such that #φ−1(φ(θ)) is constant over Θ.

1 So to prove* the Theorem* for a particular size tree, generate
random rational parameter choices θ and then symbolically
solve the simultaneous polynomial system

φ(t) = φ(θ)

and hope for one solution.

2 We check this using software SINGULAR, for JC and K2P on
4 and 5 leaf trees.

3 Recovering parameters uniquely on quartets =⇒ recover
edge lengths =⇒ recover parameters on arbitrary sized trees.
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Why n = 5 in Theorem*?

Proposition*

For T a four leaf tree under the Jukes-Cantor model, the
continuous parameters in MT ∗MT are not generically
identifiable. The map φT ,T is generically 6-to-1 (up to label
swapping).

Generic Identifiability of Continuous Parameters

Definition

Fix trees T1, . . . ,Tk on n leaves. The continuous parameters of
phylogenetic mixture model are generically identifiable if

φT1,...,Tk is one-to-one (off of a set of measure zero (up to label
swapping)).

T1

T2
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biologically relevant preimages.
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Another Mathematical Surprise
Another Mathematical Surprise
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2
3

5
T1 T2 T3

Theorem

For the Jukes-Cantor model

MT2
⊆MT1

∗MT3
.

Can the closure be dropped; i.e. does it happen for biologically

meaningful parameter values?
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Theorem

For the Jukes-Cantor model

MT2 ⊆MT1 ∗MT3 .

Can the closure be dropped; i.e. does it happen for biologically
meaningful parameter values?
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Future Directions

Develop methods to remove the * from a Theorem*

Deal with the other group-based models (CFN, K3P)

(K3P: current joint work with M. Casanellas - computational)

Beyond group-based models, GTR, GMM

Beyond 2-tree mixtures to k-tree mixtures

(Recent work: M. Casanellas, J. Fernández-Sánchez, A.
Kedzierska: some non-identifiability results)
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