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Solving polynomial system

P(x) = (p1(x),...,pu(x)) =0, xeC"

1. Linear Homotopy  (Begins in 1979)

2. Nonlinear Homotopy
(Polyhedral Homotopy)

(1995, The state of the art)
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d; .= degp;.

Oélel —B1 pi(x1,..., xn)
(1-1) : +1 : =
dy
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d; .= degp;.

Oélel — P pilxt, ..., xn) 0
(1—1) +t =
(anzn — Bn pn(xll“'lxn) 0
Form the homotopy:
2 2.2
. a1x _bl X*+y -5 o 0
= (ﬂzyl—bz) H( x—y—1 ) B (0

Theorem
For almost all (xq,..., %, B1,..., Pn) the above homotopy “works”.
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Not Really!



What’s the Problem?

The starting system in

X — P p1(x1, ..., Xn)
Hix,t) = (1—1 : ot :
(anzn - Bn pTl ('xl/ e /xn)

has
(total degree) d :==dy x dy x --- x dy
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What’s the Problem?

The starting system in

ax — By pi(x1, ..., xu) 0
H(x,t) = (1—1) : +t : =
(anz” - Bn pn(xll"'/xn) 0
has
(total degree) d :==dy x dy x --- x dy
solutions.

This number can be much larger than the number of solution of
the end system.
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The Mixed Volume
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3x1x%p +4x1 —xp+5 =0,

P(x)
6x1x% — ZX%XZ +7 =0.
o) C11X1X2 + c12X1 +c13x2 + 14 =0,
X
C21X1%3 + CX3X2 + €23 =0.

To solve P(x) = 0,
(1) solve Q(x) = 0;
(2) consider

H(x,t) = (1—t)yQ(x)+tP(x) = 0.

The Cheater’s homotopy,  Li, Sauer & Yorke (1989)
Coefficients continuatiion, Morgan & Sommese (1989)
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C11X1X2 + C12X1 + C13X2 + 14 =0,

Qlx) :

C1X1%5 + C0X3x0 + €23 =0.

C11X1 X1 “1 401021 £ 240130 *3 401414 =0,

Q(x,t) :

021x1x§tf51 + szx%XQtBZ + C23tB3 = 0.
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Qx) : ) .
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Q0=0 Q(x,1)=Q(x)
/\
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To solve
Q(x) = a1x® + cox* + 333 + cux + c5
Using linear homotopy

H(x,t) = (1 —t)(ax’ —b) +tQ(x) =0
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To solve
Q(x) = a1x® + cox* + 333 + cux + c5
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To solve
Q(x) = a1x® + cox* + 333 + cux + c5
Pick random powers of t,
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To solve
Q(x) = a1x® + cox* + 333 + cux + c5
Pick random powers of t,

H(x,t) == et 4 cox %8 + o311 + cqat!? 4 ost't = 0

H(x,1) = Q(x) H(x,0) =0

Problem: cannot identify the starting point



Binomial Equation

Equation of 2 terms:



Binomial Equation

Equation of 2 terms: can be solved easily,



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

32!+ 267 =0



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

32!+ 267 =0

3x100 — _2x93



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

32!+ 267 =0
3x100 — _2x93

X109 _ /3



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

32!+ 267 =0
3x100 — _2x93
x100-93 _ 53

X =-2/3



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

3x100 4 2x% = ax™ +bx" =0
3x100 — _2x93
X109 _ /3

X =-2/3



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

3x100 4 2x% = ax™ +bx" =0
3x100 — Dy ax™ = —bx"
X109 _ /3

X =-2/3



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

3x100 4 2x% = ax™ +bx" =0
3x100 — Dy ax™ = —bx"
x100—93 — _2/3 M — —b/[l

X =-2/3



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

3x10 4 2x% =0 ax™ +bx" =0
3x100 = 2% ax™ = —bx"
x100-98 — _p/3 X" " =—b/a
X =-2/3

Recall that H(x, t) is given by



Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

3x10 4 2x% =0 ax™ +bx" =0
3x100 = 2% ax™ = —bx"
x100-98 — _p/3 X" " =—b/a
X =-2/3

Recall that H(x, t) is given by

i \ i i \
(5,1.3) (4,0.8) (3,1.9) (1,1.2) (0,1.1)
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Equation of 2 terms: can be solved easily, no matter the degree.

3x10 4 2x% =0 ax™ +bx" =0
3x100 = 2% ax™ = —bx"
x100-98 — _p/3 X" " =—b/a
X =-2/3

Recall that H(x, t) is given by

aX’t? 4+ oM 4 e+ ot 4 est!
+ + + + +

(5,1.3) (4,0.8) (3,1.9) (1,1.2) (0,1.1)
| | u | |

5 4 3 1 0



4

c1x5 + X + C3x3 + CyXx
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x =yt~
Note that
at t=1 xX=y
Then
H(ytcc’ f) =0 (yta)5t1.3 + CZ(ytcc)4t0.8 + C3(ytoc)3t1.9 + 64(ytoc)t1.2 + C5t1'1
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= PS4 PR g gy 25 gt
= (PO 4 oyt + PO g gy )
=1 [czy4 + 5 + (terms with positive powers of t)]
H*(y,t) =t " H(yt*,t)
= cy* + ¢5 + (terms with positive powers of t)

H*(y,0) = czy4 + c5
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oyt +es=0
vt =—cs/c

can be solved and it generally has 4 solutions. Hope:




3
)
0 — of >'
D
1 3 5



3
//"\\
0 i ]
X
&= (—05,1)
1 3 5
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4
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0 1 2 3 4 5
5,&)=-12 (4,6)=-12 (3,6) =04
(1,4 =07 0,&) =11
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H*(y,t) =t~ LD H(yt*, 1)
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=t 12 [C1y5 + Czy4 + (terms with positive powers of t)]

= Cly5 + Czy4 + (terms with positive powers of t)

H%(y,0) = a1y° + coy*



H*(y,0) =0

a1y’ +oyt =0
C1y5 = —C2y4
y=—c/a



H*(y,0) =0
c1y5 + czy4 =0
C1y5 _ —C2y4

y=—0c/c1

Similarly, for almost all choices of ¢; ... ., c5, the homotopy works




Together, we get all 5 solutions of Q(x) = 0.
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0.075

x
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How to find «?

Recall
o = 0.075 ox=—05
(5,&) =1.675 5,&) = —12
(4,6)=1.1 (4,6) = —1.2
(3,&) =2.125 (3,&) =0.4
(1,&) =1.275 (1,& =07
0,&) =11 0,&) =11

Le., want to find « so that the minimun is attained exactly
twice
“mixed cell computation” (it can be done)



General Construction (to solve P(x) = 0)

To solve a system of polynomial equations P(x) =0



General Construction (to solve P(x) = 0)

To solve a system of polynomial equations P(x) =0

a a a
p1(x1,..., %) = Z ClaXy ... X = Z c1x" =0

aesS; aeS)

— U5 An a __
Pu(x1,...,x0) = E CnaXy .. Xy = E Cnax’ =0

a€s, a€eSy,




Plx)=x"+2x* —4x* +x—5=0



prx) =) crax”

aeS

Plx)=x"+2x* —4x* +x—5=0

a€es,



prx) =) X

acs;

Px) =x"+2x* —4x® +x—5=0

aes,

Qx) = Cle + C2x4 + C3x3 + c4x + c5



Px) =x"+2x* —4x® +x—5=0

— 45
Q(x) = c1° + ox* + 3% + cax + ¢35

prx) =) X

aeS
Px) = :
p”(x) = Z Cn,nxa
aes,
d
q1(x) = Z 1 ,x"
a€eSy
Qlx) =

n(x) = Z Cpy X"

aes,



aeS;
Plx) =% + 2 — 4 4 x—5=0 P(x) = :
pn(x) = Z CnaX
a€es,
i) {
Q) =) o
a€eSy
Qx) = a1x® + cox* + 03 + cux + ¢5 Qx) =

!
H(x,t) = (1 —t)y Qlx) + tP(x)



pr(x) =) crax”

aeS;
Px) =+ 24 — 43 + x—5=0 P(x) = :
pn(x) = Z Cn,nxa

a€es,

q1(x) = Z CT,nxa

a€eSy
Qx) = c1x° 4+ oox* + c3° + cax + ¢5 Qx) =

gn(x) = Z Cpy X"

aEes,
+ ¢
H(x,t) = (1 —t)y Q(x) + tP(x) H(x,t) = (1 —t)y Q(x) + tP(x)



Qx) = a1x° 4 cox* + c3x® + cux + ¢35



q(x) =) cixf

acs,

Qlx) =

Q(x) = 1% + cox* + c3%° + cax + c5

%(x) = Z C:,axa

a€es,



q(x) =) cixf

acs,

Qlx) =

Q(x) = 1% + cox* + c3%° + cax + c5

%(x) = Z C:,axa

a€es,



Q(x) = 1% + cox* + c3%° + cax + c5

Hix, ) = c;x51 4 cpx*t08

+ a3t 4 cgxtt? + et



q1(x) = Z ci X"

aeS
Q(x) = c12° 4 cox* + 36 +cyx + ¢ Qx) = :
gu(x) = Z C:raxa
a€es,
+ !
hy (x, t) = Z Ciaxﬂtun(a)
aesS;
H(.’X’, t) = C1X5t]'3 + c2x4t0'8 H(x, t) — .
3419 1.2 1.1
c3x’t xt )
+ 3 +C4 +C5t hn(x, t) _ Z Czraxuttu,,(ﬂ)

aes,



fx) =)
aeS;
Q(x) = c12° + cpx* + c3x° + c4x + ¢35 Qlx) = :
Galx) = Yo"
a€es,
1 4
hi(x,t) = Z Ciaxﬂtwl(a)
aesS;
H(x,t) = c1x°t"% 4 cox*08 H(x,t) = :
3,19 1.2 1.1
x°t u
+C3 + cgxt " 4 cst hn (x, i’) — Z C;,axutwn(ﬂ)
aEes,
{ 4

H(x,0)=0 H(x,0)=0



Binomial system

Cr1y™!t + Cpy®®?

Enlyan1 + EnZYa"2



Binomial system

iyt +opy*? = 0,

Cny* + C2y?? = 0.

1. It can be solved constructively and efficiently



Binomial system

iyt +opy*? = 0,

Cny* + C2y?? = 0.

1. It can be solved constructively and efficiently
2. The number of isolated zeros in (C*)"

a1] —an
= |det :

dp1 — a2



ou»

(@3 )

=)




F

(@3 )




3
// \\ A
0+ )
& = (0?075,1 & = (—=0.5,1)
1 2 3 5



S1, S, ...8, ¢ NI

Si



wi:Si—>IR,

i=1,...

N



w;:S5 — R, i=1,...,n
Si={a=(a,wia)) |acs}



w;:S5 — R, i=1,...,n
Si={a=(a,wia)) |acs}

S d=(d,wi (d
= (a,01(a) n (den (D)
¢=(c,wi ()
d
B=(bAb» .




Problem: Look for hyperplane with normal
& = (o, 1) which supports each S; at exactly 2 points

a=(o,1)

N




Looking for « € R", and pairs

{aj1,a12) C Sy,

{an1, a2} C Sy

such that
(&,a11) = (& app) < (& a), Va € S1\{ayy,arn),
<&/ é1’ll> = <6(/ an2> < <6('/ é>/ Va e Sn\{anlranZ}-

where &= (a,1), a=(a, w(a))

The Mixed Volume computation.



Change of variable

x =yt*



) Change of variables
Change of variable

X1 = Y1t
x =yt~ 1= N
x=uyt

Xy = Ynt™"



Ch f variabl
Change of variable ange of vanabies
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x=y whent=1 Xn = Ynt™"



Ch f variabl
Change of variable ange of variables
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x =yt~ 1=W1

x=y whent=1 Xy = Yt
1
H(x,1)
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Ch f variabl
Change of variable ange of vanabies

X1 = Y1t
x =yt~ 1=
! : x = yt*
x=y whent=1 Xn = Ynt™"
1
H(x, t) = c;x°t3 + ...
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Ch f variabl
Change of variable ange of vanabies

x =yt~ =t
! : x =yt*
x=y whent=1 Xp = Ynt™"
1
H(x, t) = c;x°t3 + ...
=0 (yto‘)5t1'3 +...
— P53



Change of variable

x =yt*
1
x=y whent=1

1

H(x, t) = c;x°t3 + ...
=y (yt*)°H3 ..
— P53

— PG

Change of variables
x1 = yit™
x = yt*

Xy = Yut™"



Change of variable

x =yt*
1
x=y whent=1

1

H(x, t) = c;x°t3 + ...
=y (yt*)°H3 ..
— P53

— PG

— c1y5t<57&> _|_ e

Change of variables
x1 = yit™
x = yt*

Xy = Ynt™"



Change of variable

x =yt*
1
x=y whent=1

1

H(x, t) = c;x°t3 + ...
=y (yt*)°H3 ..
— P53

— PG

— c1y5t<57&> _|_ e

Change of variables

X1 = ylttxl
x = yt*
Xy = Ynt™"
Then

x=y whent=1



Change of variable

x =yt*
1
x=y whent=1

1

H(x, t) = c;x°t3 + ...
=y (yt*)°H3 ..
— P53

— PG

— c1y5t<57&> _|_ e

Change of variables

X1 = ylttxl
x = yt*
Xy = Ynt™"
Then

x=y whent=1
A typical term in h; looks like

A — c*yat(&,iz)



Then

H(x,t) = H(yt*,t)



Then
Z CT,uy”t<é"a>
aeS,

H(-x/ t) - H(yt“/ t) -

D Gt

a€es,




Then

Z Ciuyﬂﬂdﬁ) — B Z Ciayﬂtw@ﬁ)*Bl
a€Sy aesy

H(xl t) = H(yt“/ t) = :

Z C;,ayat<&ﬁ> =t P Z Cik,ayaﬂ&,ﬁ)iﬁn

aESn aeSl




Then

H(x,t) = H(yt™,t) =

aESn 0651
where
1= min (&4) Bu= min (&)
j=1,...,m! j=1,...,m"

and they are each attained exactly twice.



Define

H*(y,t)

Z Ciayut<&/ﬁ> - Bl

a€eS,

D iyt

aeSy



Define

Z Ciayut<&/ﬁ> - Bl

a€eS,
ch(yr t) = :

D clay e h
aeSy

1 . cpe 7
=Y "4 Iy y" + “terms with positive power of ¢

=c, any”n +c bnybn + “terms with positive power of t”



x q w bl
CLal” +Cpy
H* (y/ O) =
n i
C;,a”ya + Cik,b”yb

a binomial system,



CT,alyﬂl + CT,blybl
H“(y/ O) =

n v
C;,a”ya + Cik,b” yb

a binomial system,

which can be solved efficiently.



CT,alyﬂl + CT,blybl
H“(% O) =

n v
C;,a”ya + Cik,b” yb

a binomial system,
which can be solved efficiently.

So the polyhedral homotopy can start.



Theorem
For almost all choices of the (complex) coefficients, constant terms,
and the (rational) powers of t, the polyhedral homotopy “works”.
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» HOMA4PS (1999), Tangan Gao, T.Y.Li
» HOM4PS-2.0 (2008), T.L.Lee, T.Y.Li, C.H.Tsai, Computing
» HOM4PS-2.0para (2009), T.Y.Li, C.H.Tsai, Parallel Comput.
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» HOM4PS-2.0para (2009), T.Y.Li, C.H.Tsai, Parallel Comput.

In the thesis, I have used the biggest system to be of 18
variables and 18 equations ( 9 of them have around 20 terms
each). This was done by the HOM4PS-2.0 in just around

2 hours. Which was mind-blowing as the other packages took
5 days or so!



» HOMA4PS (1999), Tangan Gao, T.Y.Li
» HOM4PS-2.0 (2008), T.L.Lee, T.Y.Li, C.H.Tsai, Computing
» HOM4PS-2.0para (2009), T.Y.Li, C.H.Tsai, Parallel Comput.

In the thesis, I have used the biggest system to be of 18
variables and 18 equations ( 9 of them have around 20 terms
each). This was done by the HOM4PS-2.0 in just around

2 hours. Which was mind-blowing as the other packages took
5 days or so!

Please note that I am not qualified enough to compare the
efficiency of various homotopy continuation packages
available. But this is a striking difference to recognize which
one doesn’t have to be qualified!



» PHCpack ]J. Verschelde (1999),

“Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation”, ACM
Trans. Math. Softw., 25, 251-276.

» PHoM T. Gunji, S. Kim, M. Kojima, A. Takeda,
K. Fujisawa and T. Mizutani (2004),

“PHoM - A polyhedral homotopy continuation method”,
Computing, 73, 57-77.



» PHCpack ]J. Verschelde (1999),

“Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation”, ACM
Trans. Math. Softw., 25, 251-276.

» PHoM T. Gunji, S. Kim, M. Kojima, A. Takeda,
K. Fujisawa and T. Mizutani (2004),

“PHoM - A polyhedral homotopy continuation method”,
Computing, 73, 57-77.

Important notice: Currently, we do not have any plan to
release a new version of PHoM in the near future, and we
will no longer provide service for PHoM package. This
webpage will not be available from Dec. 31, 2008. For
solving polynomial systems by the polyhedral homotopy
method, we recommend HOME4PS-2.0.
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In the thesis, I have used the biggest system to be of 18
variables and 18 equations ( 9 of them have around 20 terms
each). This was done by the HOMA4PS-2.0 in just around

2 hours. Which was mind-blowing as the other packages took
5 days or so!

Please note that I am not qualified enough to compare the
efficiency of various homotopy continuation packages
available. But this is a striking difference to recognize which
one doesn’t have to be qualified!



eco-n Total degree = 2-3"2

(x1+x1x20+ -+ xp—2%-1)x, — 1 =0
(x2 +x1x3 + -+ Xy3X,—1)x, —2 =0

Xp—1Xp —(n—1) =0
xp+x2+-+x,21+1=0

noon-n Total degree = 3"

xl(x§+x§—|—~~+x%—1.1)+1:0
XoxF+xf+ 12 —11)+1=0

(2433 + a2

L —11)+1=0




cyclic-n Total degree = n!

X1+x+ - +x,=0
X1X + XoX3 + - -+ Xp—1Xy + Xpx1 =0
X1X2X3 + X0X3X4 + - - - + Xp_1XpX1 + XpX1X2 =0

X1xp---xy,—1=0

katsura-n Total degree = 2"

2%y 1+ 2x,+ -+ 2% +x1—1=0

22 420+ 205405 —x =0
2Xy Xy 1 + 22X 1% + - - -+ 2%0x3 + 2x10p —xp =0
2%y 1211 + 2Xn—2Xp + -+ 2x1x3 + X5 —x3 =0

2x2Xp 41 + 2X1Xy + 2X0X 1 + -0+ 22X 20X (n42) 72 — X = 0
220Xy 41 + 2212 + 200X 1 + - X7, ) n — X =0




reimer-n Total degree = (n+1)!

20F =205+ -+ (—1)"12x2 —1=0
20 =254+ (—1)"H2xd —1=0

2x111+1 _ 2x§+1 NI (_1)n+12xﬁ+1 —1=0

Dell PC with a Pentium 4 CPU of 2.2GHz, 1GB of memory



Polynomial | Total degree PHoM | HOM4PS-2.0 | Speed
system cpu time cpu time up
eco-14 1,062,882 | 9h57m15s 529s | 677.4
eco-15 3,188,646 - 2m25s -
eco-17 28,697,814 - 22m23s -
noon-9 19,683 | 5h01mO06s 1ml15s | 2409
noon-10 59,049 - 5m12s -
noon-13 1,594,323 - 7h02m10s -
katsura-11 2,048 | 1Th21m13s 28s 174.0
katsura-12 4,096 | 4h00m09s 1m42s 141.3
katsura-13 8,192 - 4mb6s -
katsura-15 32,768 - 1h50m26s -
cyclic-8 40,320 32m32s 6.8s | 287.0
cyclic-9 362,880 - 44s -
cyclic-12 | 479,001,600 - 1h36m40s -
reimer-6 5,040 | 1Th14m50s 12.1s 371.0
reimer-7 40,320 - 2m49s -
reimer-9 3,628,800 - 8h47m42s -




System Total degree CPU time Speed-up
PHCpack | HOM4PS-2.0 ratio
noon-9 19,683 33m28s 22.2s 90.5
noon-10 59,049 | 2h33m27s 1m27s 105.8
noon-11 177,147 - 5m32s -
noon-13 1,594,323 - 3h7m10s -
katsura-14 16,384 | 2h49m00s 2mb52s 59.0
katsura-15 32,768 | 8h22m45s 7m03s 71.3
katsura-16 65,536 - 16m25s -
katsura-20 1,048,576 - 8h58m00s -
reimer-6 5,040 15m08s 9.6s 94.5
reimer-7 40,320 | 3h45m43s 1m58s 114.7
reimer-8 362,880 - 30m43s -
reimer-9 3,628,800 - 7h52m40s -




System | Total degree CPU time Speed-up

PHCpack | HOM4PS-2.0 ratio

eco-14 1,062,882 | 1h26m04s 52.9s 97.6

eco-15 3,188,646 | 3h55m23s 2m25s 97.4
eco-17 28,697,814 - 22m23s -
eco-18 86,093,442 - 1h51m30s -

cyclic-9 362,880 | 3h50m48s 44s 314.7

cyclic-10 3,628,800 | 11h00m23s 2m47s 237.2
cyclic-11 39,916,800 - 19m40s -
cyclic-12 479,001,600 - 1h36m40s -

Use Polyhedral Homotopy




Maximum solvable size

System
PHoM | PHCpack | HOMA4PS-2.0
eco- || 14 (1,062,882) | 15 (3,188,646) | 18  (86,093442)
noon- || 9 (19,683) | 10 (59,049) | 13 (1,594,323)
katsura - || 12 (2,048) | 15 (32,768) | 20 (1,048,576)
cyclic- || 8 (40,320) | 10  (3,628,800) | 12  (479,001,600)
reimer- || 6 (5,040) | 7 (40,320) | 9 (3,628,800)




Numerical results of HOM4PS-2.0para

All the computations were carried out on a cluster 8 AMD dual
2.2 GHz cpus (1 master and 7 workers). Again, we only list
those benchmark systems that can be solved within 12 hours
cpu time.



Numerical results of HOM4PS-2.0para

All the computations were carried out on a cluster 8 AMD dual
2.2 GHz cpus (1 master and 7 workers). Again, we only list
those benchmark systems that can be solved within 12 hours
cpu time.

» Master-worker type of environment is used.

» Use MPI (message passing interface) to communicate
between the master processor and worker processors



System | CPU time Total degree | Mixed Vol. Curve
(# of paths) | Jumping

eco-17 2mlls 28,697,814 32,768 -
eco-18 6m30s 86,093,442 65,536 | x -
eco-19 26m26s 258,280,326 131,072 -
eco-20 | 1h29m29s 774,840,978 262,144 -
eco-21 | 10h08m55s | 2,324,522,934 524,288 1
cyclic-11 3m34s 39,916,800 184,756 -
cyclic-12 14m07s 479,001,600 500,352 | x -
cyclic-13 | 1h39m10s | 6,227,020,800 2,704,156 -
cyclic-14 | 7h32m42s | 87,178,291,200 8,795,976 4

Solving systems by the polyhedral-linear homotopy with 1
master and 7 workers




System | CPU time Total degree | # curve | # of isolated
(=# of paths) | jumping solutions

noon-12 2m23s 531,417+24 - 531,417
noon-13 7m48s | 1,594,297+26 | x - 1,594,297
noon-14 38mi12s | 4,782,941+28 - 4,782,941
noon-15 | 4h14m33s | 14,348,877+30 - 14,348,877
katsura-18 9m46s 262,144 - 262,144
katsura-19 23m36s 524,288 2 524,288
katsura-20 55m10s 1,048,576 | x 4 1,048,576
katsura-21 | 2h08m42s 2,097,152 8 2,097,152
katsura-22 | 4h52m01s 4,194,304 20 4,194,304
katsura-23 | 11h17m40s 8,388,608 52 8,388,608
reimer-8 2m36s 362,880 - 14,400
reimer-9 28m04s 3,628,800 | x 8 86,400
reimer-10 | 8h40m46s 39,916,800 20 518,400

Solving systems by the classical linear homotopy with 1 master
and 7 workers



# of Total time to Time to find Time to Time to
wks solve system mixed cells trace curve check solutions
k cpu(s) [ ratio | cpu(s) [ ratio | cpu(s) [ ratio | cpu(s) | ratio
eco 1 445.32 1.00 120.02 1.00 325.00 1.00 0.30 1.00
-16 2 223.49 1.99 60.66 1.98 162.58 2.00 0.25 1.20
3 150.69 2.96 40.94 2.93 109.53 297 0.22 1.36
5 91.31 4.88 25.22 4.76 65.89 4.93 0.20 1.59
7 68.70 6.48 19.99 6.00 48.58 6.69 0.13 2.31
cyc 1 1475.39 | 1.00 38.15 1.00 | 1436.49 | 1.00 0.75 1.00
-11 2 734.96 2.00 19.10 2.00 715.41 2.00 0.45 1.67
3 494.19 2.99 12.94 2.95 480.86 2.99 0.39 1.92
5 295.90 4.99 8.05 4.74 287.47 5.00 0.38 1.97
7 212.87 6.93 6.47 6.00 206.06 6.97 0.34 2.21

The scalability of solving systems by the polyhedral homotopy




System #of Total time to Time to Time to

workers | solve system trace curve check solutions

k cpu(s) [ ratio | cpu(s) [ ratio | cpu(s) [ ratio

noon 1 1003.32 | 1.00 980.72 1.00 22.50 1.00
-12 2 501.75 2.00 490.33 2.00 11.42 1.97

3 335.18 2.99 326.68 3.00 8.50 2.65

5 201.27 | 4.98 195.30 5.00 5.97 3.77

7 143.22 7.00 138.88 7.00 4.34 5.18

reimer 1 1088.95 | 1.00 | 1087.74 | 1.00 1.21 1.00
-8 2 545.08 | 2.00 | 543.96 | 2.00 1.12 1.08

3 363.89 2.99 362.81 3.00 1.08 1.12

5 218.69 4.98 217.97 | 4.99 0.72 1.68

7 156.54 | 696 | 155.86 | 6.98 0.68 1.78

katsura 1 1964.22 | 1.00 | 1963.12 | 1.00 1.10 1.00
-17 2 982.38 2.00 981.35 2.00 1.03 1.07

3 654.17 3.00 653.22 3.00 0.95 1.16

5 394.02 4.99 393.18 4.99 0.84 1.31

7 280.56 7.00 279.85 7.00 0.71 1.55

The scalability of solving systems by the classical linear homotopy




Thank You!
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