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D-modules theory?

D for differential.

D for any ring of Linear Partial Differential

Operators.

A D–module is a module over the ring D.

It represents a system of LPDE.
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D-modules theory?

D for differential.

D for any ring of Linear Partial Differential

Operators.

Theory developed (from 1970) by I.N.

Bernstein, M. Kashiwara, T. Kawai,

B. Malgrange, Z. Mebkhout, D. Quillen, M.

Sato and others.
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Linear Partial Differential Equations
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Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

(Some) computable objects in D-modules theory – p. 4/27



Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

has no non-zero holomorphic solution (at the origin).
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Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)( 1
xy ) = (y∂y + 1)( 1

xy ) = 0
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Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)( 1
xy ) = (y∂y + 1)( 1

xy ) = 0

The meromorphic function 1
xy is a solution of the system (1)
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Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)( 1
xy ) = (y∂y + 1)( 1

xy ) = 0

The meromorphic function 1
xy is a solution of the system (1)

What does it look like the set of LPDO Q = Q(x, y, ∂x, ∂y)

such that Q( 1
xy
) = 0?
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Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)( 1
xy ) = (y∂y + 1)( 1

xy ) = 0

The meromorphic function 1
xy is a solution of the system (1)

A kind of “inverse problem": The input is the solution 1
xy

and
we want the set of equations Q(x, y, ∂x, ∂y)(u(x, y)) = 0

having u(x, y) = 1
xy as a solution.
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

∂β = ∂β1

1 · · · ∂βn
n = ∂β1+···+βn

∂x
β1
1 ···∂x

βn
n
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).
LPDO can be added (obvious way) and also multiplied:
the product PQ is computed by applying Leibniz’s rule:
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).
LPDO can be added (obvious way) and also multiplied:
the product PQ is computed by applying Leibniz’s rule:

∂if = f∂i +
∂f
∂xi

(for f ∈ C[x]).
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Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).
LPDO can be added (obvious way) and also multiplied:
the product PQ is computed by applying Leibniz’s rule:

∂if = f∂i +
∂f
∂xi

(for f ∈ C[x]).

An is a (non-commutative) ring (the Weyl algebra).
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Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P ( 1f ) = 0}.
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Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P ( 1f ) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann( 1

f
)

the annihilating ideal of 1
f .
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Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P ( 1f ) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann( 1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.
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Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P ( 1f ) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann( 1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.

(T. Oaku, N. Takayama) Describe an algorithm solving
Problem 1.
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Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P ( 1f ) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann( 1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.

(T. Oaku, N. Takayama) Describe an algorithm solving
Problem 1.

Input: A non zero polynomial f ∈ C[x].
Output: A finite generating system for the ideal Ann( 1

f
).
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Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P ( 1f ) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann( 1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.

(T. Oaku, N. Takayama) Describe an algorithm solving
Problem 1.

Object Ann( 1f ) is computable.
Oaku-Takayama’s algorithm is implemented in

Kan/sm1 (risa/asir); Macaulay2 (D-modules.m2);
Singular.
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Groebner bases inAn
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Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann( 1f ).
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Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann( 1f ).

As many algorithms in Algebraic Geometry their complexity
is double exponential.
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Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann( 1f ).

As many algorithms in Algebraic Geometry their complexity
is double exponential.

No general alternative methods to compute Ann( 1
f
) are

known.
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Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann( 1f ).

As many algorithms in Algebraic Geometry their complexity
is double exponential.

No general alternative methods to compute Ann( 1
f
) are

known.
Ex.: f = xyz(x+ y)(x+ z)(y + z)(x+ y + z).
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Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann( 1f ).

As many algorithms in Algebraic Geometry their complexity
is double exponential.

No general alternative methods to compute Ann( 1
f
) are

known.
Ex.: f = xyz(x+ y)(x+ z)(y + z)(x+ y + z).

Macaulay 2: RatAnn f computes Ann( 1f ). But for this
example, in my computer, Macaulay2 gives
*** out of memory, exiting ***.
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Nevertheless

Nevertheless, we can prove that Ann( 1
f
) is generated by the

three operators
P1, P2, P3
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Nevertheless

P1 = x∂x + y∂y + z∂z + 7

P2 = y(x+ y)(y+ z)∂y − z(x+ z)(y+ z)∂z +(y− z)(x+4y+4z)

P3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y+ 3z)∂z + 3x2 + 5xy−

4y2 + 8xz + 8yz + 8z2
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Nevertheless

P1 = x∂x + y∂y + z∂z + 7

P2 = y(x+ y)(y+ z)∂y − z(x+ z)(y+ z)∂z +(y− z)(x+4y+4z)

P3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y+ 3z)∂z + 3x2 + 5xy−

4y2 + 8xz + 8yz + 8z2

How to prove that?
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First step toAnn(1f ): order 1 operators
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First step toAnn(1f ): order 1 operators

If f ∈ C (and f 6= 0) then Ann( 1
f
) = An(∂1, . . . , ∂n).
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First step toAnn(1f ): order 1 operators

Assume f is not a constant polynomial.
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First step toAnn(1f ): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].
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First step toAnn(1f ): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].

Remark: P ( 1f ) = 0 if and only if
∑n

i=1 pi(x)
∂f
∂xi

= p0(x)f .
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First step toAnn(1f ): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].

Remark: P ( 1f ) = 0 if and only if
∑n

i=1 pi(x)
∂f
∂xi

= p0(x)f .

(K. Saito): The vector field
∑

pi(x)∂i is called logarithmic
w.r.t. f .
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First step toAnn(1f ): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].

Remark: P ( 1f ) = 0 if and only if
∑n

i=1 pi(x)
∂f
∂xi

= p0(x)f .

(K. Saito): The vector field
∑

pi(x)∂i is called logarithmic
w.r.t. f .

Ex.: f∂i is a logarithmic vector field (for i = 1, . . . , n) w.r.t. f
and f∂i + ∂i(f) annihilates 1

f .
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Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f ).
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Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f ).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .
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Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f ).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

(Some) computable objects in D-modules theory – p. 10/27



Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f ).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)( 1f ) the ideal in An generated by LPDO P of

order 1 and P ( 1
f
) = 0.
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Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f ).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)( 1f ) the ideal in An generated by LPDO P of

order 1 and P ( 1
f
) = 0.

Remark: Ann(1)( 1f ) = AnD̃er(log f).
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Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f ).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)( 1f ) the ideal in An generated by LPDO P of

order 1 and P ( 1
f
) = 0.

Ann(1)( 1f ) ⊂ Ann( 1f )
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Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f ).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)( 1f ) the ideal in An generated by LPDO P of

order 1 and P ( 1
f
) = 0.

Problem 2. Describe (characterize) the class of nonzero
f ∈ C[x] such that

Ann(1)( 1f ) = Ann( 1f ).
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First examples

Ex.: n = 1, x = x1.

Ann(1)(1x) = Ann(1x) = A1(x∂x + 1).
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First examples

Ex.: n = 2, x = x1, y = x2.

Ann(1)( 1
xy) = Ann( 1

xy) = A2(x∂x+1, y∂y +1).
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First examples

Ex.: n = 2, x = x1, y = x2.

Ann(1)( 1
x−y2

) = Ann( 1
x−y2

) =

A2(2y∂x + ∂y, (x− y2)∂x).

(Some) computable objects in D-modules theory – p. 11/27



First examples

Ex.: n = 2,

Ann(1)( 1
x4+y5+xy4

) & Ann( 1
x4+y5+xy4

).
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Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)
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Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f ).
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Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f ).

Previous map is an isomorphism of C[x]–modules. So,
object Der(log f) is computable.

By using commutative Groebner basis computation in the
polynomial ring C[x].
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Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f ).

Previous map is an isomorphism of C[x]–modules. So,
object Der(log f) is computable.

By using commutative Groebner basis computation in the
polynomial ring C[x].

Ann(1)( 1f ) is computable (using only commutative Groebner
bases algorithms; which also have double exponential

complexity).
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Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f ).

Previous map is an isomorphism of C[x]–modules. So,
object Der(log f) is computable.

By using commutative Groebner basis computation in the
polynomial ring C[x].

In practice Ann(1)( 1f ) is easier to compute than Ann( 1f ).
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Ann(k)(1
f
)
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Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)( 1f )
ideal in An generated by LPDO P such that

P ( 1f ) = 0 and ord(P ) ≤ k.
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Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)( 1f )
ideal in An generated by LPDO P such that

P ( 1f ) = 0 and ord(P ) ≤ k.

Ann(k)( 1f ) is also computable (using only commutative
Groebner basis algorithms).
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Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)( 1f )
ideal in An generated by LPDO P such that

P ( 1f ) = 0 and ord(P ) ≤ k.

Ann(k)( 1f ) is also computable (using only commutative
Groebner basis algorithms).

Ex.: P =
∑

i≤j pij(x)∂i∂j +
∑

i pi(x)∂i + p0(x)

P ( 1
f
) = 0 if and only if

the coefficients (pij(x), pi(x), p0(x)) represent a syzygy
among f2 and a set of expressions in the partial derivatives

of f up to degree 2.
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Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)( 1f )
ideal in An generated by LPDO P such that

P ( 1f ) = 0 and ord(P ) ≤ k.

Ann(k)( 1f ) is also computable (using only commutative
Groebner basis algorithms).

Ann(1)( 1
f
) ⊂ Ann(2)( 1

f
) ⊂ · · · ⊂ Ann(k)( 1

f
) ⊂ · · · ⊂ Ann( 1

f
).

(Some) computable objects in D-modules theory – p. 13/27



Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)( 1f )
ideal in An generated by LPDO P such that

P ( 1f ) = 0 and ord(P ) ≤ k.

Ann(k)( 1f ) is also computable (using only commutative
Groebner basis algorithms).

(Noetherianity): There exists a minimal integer k ≥ 1
(k = k(f) depending on f ) such that

Ann(k)( 1f ) = Ann( 1f ).
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Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)( 1f )
ideal in An generated by LPDO P such that

P ( 1f ) = 0 and ord(P ) ≤ k.

Ann(k)( 1f ) is also computable (using only commutative
Groebner basis algorithms).

(Noetherianity): There exists a minimal integer k ≥ 1
(k = k(f) depending on f ) such that

Ann(k)( 1f ) = Ann( 1f ).

Problem 3. Describe the behavior of the function
0 6= f ∈ C[x] 7→ k(f).
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Singularities Theory tools

From now on, we assume f is a reduced

nonzero polynomial in C[x].

Ωp differential p-forms with polynomial

coefficients, p ∈ N.
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Singularities Theory tools

Ωp(1/f ) meromorphic differential p-forms

with poles along f = 0, p ∈ N.
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Singularities Theory tools

Ωp(1/f ) meromorphic differential p-forms

with poles along f = 0, p ∈ N.

(E. Brieskorn) The cohomology of Ω•(1/f )

is computable if f is an arrangement of

hyperplanes.
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Singularities Theory tools

Ωp(1/f ) meromorphic differential p-forms

with poles along f = 0, p ∈ N.

(E. Brieskorn) The cohomology of Ω•(1/f )

is computable if f is an arrangement of

hyperplanes.

(T. Oaku, N.Takayama) For any nonzero

polynomial f ∈ C[x], the cohomology of

Ω•(1/f ) is computable.

(Some) computable objects in D-modules theory – p. 14/27



Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f ).
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Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f ).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f ) if
fω and fdω have no poles.
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Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f ).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f ) if
fω and fdω have no poles.

Ex.: dx
x and dy

y are logarithmic 1-forms (w.r.t. f = xy).
dx
x2 , dx

y are not.
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Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f ).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f ) if
fω and fdω have no poles.

The inclusion if : Ω•(log f) → Ω•(1/f) is a morphism of
complexes (both with the exterior derivative).

(Some) computable objects in D-modules theory – p. 15/27



Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f ).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f ) if
fω and fdω have no poles.

The inclusion if : Ω•(log f) → Ω•(1/f) is a morphism of
complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the
cohomology of the logarithmic complex Ω•(log f) for a given

nonzero polynomial f .
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Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f ).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f ) if
fω and fdω have no poles.

The inclusion if : Ω•(log f) → Ω•(1/f) is a morphism of
complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the
cohomology of the logarithmic complex Ω•(log f) for a given

nonzero polynomial f .

(N. Takayama- F.J.C.J.) Positive solution to Problem 4 if
n = 2.

(Some) computable objects in D-modules theory – p. 15/27



Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

polynomial f such that

if : Ω•(log f ) → Ω•(1/f )

is a quasi-isomorphism.

(Some) computable objects in D-modules theory – p. 16/27



Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

polynomial f such that

if : Ω•(log f ) → Ω•(1/f )

is a quasi-isomorphism.

quasi-isomorphism ≡ induces an

isomorphism in cohomology.
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Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

polynomial f such that

if : Ω•(log f ) → Ω•(1/f )

is a quasi-isomorphism.

If so, we say that the Logarithmic

Comparison Property (LCP) holds for f (or

for f = 0).
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Ann(1f ) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)( 1f ) = Ann( 1f ) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.
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Ann(1f ) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)( 1f ) = Ann( 1f ) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

Freeness is computable (related to Quillen-Suslin Th.).
Spencer property is computable (with Groebner basis in

An).
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Ann(1f ) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)( 1f ) = Ann( 1f ) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

The class (Spencer + free) strictly contains
• all non constant f(x, y) (K. Saito; F. Calderón) and
• all free arrangement of hyperplanes in Cn (for n ∈ N) (F.
Calderón-L. Narváez).
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Ann(1f ) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)( 1f ) = Ann( 1f ) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

The class (Spencer + free) strictly contains
• all non constant f(x, y) (K. Saito; F. Calderón) and
• all free arrangement of hyperplanes in Cn (for n ∈ N) (F.
Calderón-L. Narváez).

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) if free and Spencer.
f = xyz(x+ y + z) is Spencer but not free.

f = (x+ yz)(x4 + y5 + xy4) is free but not Spencer (F.
Calderón-L. Narváez).
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Ann(1f ) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)( 1f ) = Ann( 1f ) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

The class (Spencer + free) strictly contains
• all non constant f(x, y) (K. Saito; F. Calderón) and
• all free arrangement of hyperplanes in Cn (for n ∈ N) (F.
Calderón-L. Narváez).

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) if free and Spencer.
f = xyz(x+ y + z) is Spencer but not free.

f = (x+ yz)(x4 + y5 + xy4) is free but not Spencer (F.
Calderón-L. Narváez).
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f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free
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f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).
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f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)( 1f ) = Ann( 1f ).
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f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)( 1f ) = Ann( 1f ).

Compute Der(log f) via Syz(f ′x, f
′
y, f

′
z, f) (Groebner basis in

C[x, y, z]).
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f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)( 1f ) = Ann( 1f ).

By a computation with Macaulay2, Der(log f) is generated
by δ1 = x∂x + y∂y + z∂z

δ2 = y(x+ y)(y + z)∂y − z(x+ z)(y + z)∂z

δ3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y + 3z)∂z
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f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)( 1f ) = Ann( 1f ).

Then (as announced some slides before)
Ann(1)( 1f ) = Ann( 1f ) is generated by

P1 = x∂x + y∂y + z∂z + 7
P2 = y(x+ y)(y+ z)∂y − z(x+ z)(y+ z)∂z +(y− z)(x+4y+4z)

P3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y+ 3z)∂z + 3x2 + 5xy−

4y2 + 8xz + 8yz + 8z2
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A (personal) tautology

Homo sapiens invented the natural

numbers (N) to count things.
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A (personal) tautology

When computations became hard to

achieve homo sapiens invented

Mathematics.

Computer Algebra is a powerful tool in

Mathematics (and in particular in

D-modules theory).
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A (personal) tautology

Modern Industrial Society needs to do

big/heavy computations. In order to

simplify them (and essentially –at least in

D-module theory– all non trivial

computation are heavy)
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A (personal) tautology

Modern Industrial Society needs to do

big/heavy computations. In order to

simplify them (and essentially –at least in

D-module theory– all non trivial

computation are heavy)

we must use meaningful and deep

mathematical ideas and results.
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A (personal) tautology

Modern Industrial Society needs to do

big/heavy computations. In order to

simplify them (and essentially –at least in

D-module theory– all non trivial

computation are heavy)

Testing equality Ann(1)( 1f ) = Ann( 1f ) is a

modest and clear example of such

tautology.
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Thank you very much.
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References

References
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Additional results

The following slides give more precise

results

on the subject of the talk.
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Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f ) is a free C[x]–module.

If so, we also say that f is free.
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Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f ) is a free C[x]–module.

If so, we also say that f is free.
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Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f ) is a free C[x]–module.

If so, we also say that f is free.

(K. Saito) Any non constant polynomial in

two variables f (x, y) is free.
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Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f ) is a free C[x]–module.

If so, we also say that f is free.

f = xyz(x + y)(x + z)(y + z)(x + y + z) is

free.
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Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f ) is a free C[x]–module.

If so, we also say that f is free.

f = xyz(x + z + z) is not free.
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Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f ) is a free C[x]–module.

If so, we also say that f is free.

Freeness is computable (K. Saito’s

criterion + effective Quillen-Suslin).
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LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally
quasi-homogeneous hypersurface (in Cn) then f satisfies

LCP.
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LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally
quasi-homogeneous hypersurface (in Cn) then f satisfies

LCP.

So, for this class of f , by using Oaku-Takayama algorithm,
Hp(Ω•(log f)) = Hp(Ω•(1/f)) is computable for all p.
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LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally
quasi-homogeneous hypersurface (in Cn) then f satisfies

LCP.

So, for this class of f , by using Oaku-Takayama algorithm,
Hp(Ω•(log f)) = Hp(Ω•(1/f)) is computable for all p. So, for

this class of f , we have a positive solution of Problem 4
(the cohomology of Ω•(log f) is computable)
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Free + Locally Quasi-homogeneous?

How big is the class
{f ∈ C[x] | free + locally quasi-homogeneous }?
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Free + Locally Quasi-homogeneous?

How big is the class
{f ∈ C[x] | free + locally quasi-homogeneous }? Previous

class strictly includes: a) all the free hyperplane
arrangements.
b) all locally quasi-homogeneous plane curves f(x, y) = 0.
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LCT for curves

(F.J. Calderón, L. Narváez, D. Mond,

F.J.C.J.) If f (x, y) = 0 is a (reduced) plane

curve then f satisfies LCP if and only if

and all its singularities are

quasi-homogeneous.
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LCT for curves

(F.J. Calderón, L. Narváez, D. Mond,

F.J.C.J.) If f (x, y) = 0 is a (reduced) plane

curve then f satisfies LCP if and only if

and all its singularities are

quasi-homogeneous.
f = x4 + y5 + xy4 = 0 has a non

quasi-homogeneous singularity at the origin. Since

f is free then f does not satisfy LCP. Since f is

Spencer Ann(1)( 1
f
) $ Ann( 1

f
).
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Torelli’s conjecture

Conjecture. For any nonzero polynomial

f ∈ C[x], Ann(1)( 1f ) = Ann( 1f ) if and only if

if : Ω•(log f ) → Ω•(1/f ) is a

quasi-isomorphism.
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Torelli’s conjecture

Conjecture. For any nonzero polynomial

f ∈ C[x], Ann(1)( 1f ) = Ann( 1f ) if and only if

if : Ω•(log f ) → Ω•(1/f ) is a

quasi-isomorphism.

(J.M. Ucha-F.J.C.J.) If f ∈ C[x] is (Spencer

+ free) then previous conjecture is

satisfied.
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