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Toric ideals

N: the set of nonnegative integers

A={ay,...,a,} C N: configuration
(Assume that 3w € R? s.t. w-a; = 1 for Vi)
K[t] :== K[ti, o, ..., ty]: polynomial ring over a field K
(@a=(2,4,0,1) e N* = t2 .= 2ty € K[t1, b, l3, ts])
K[A] := K[t?1,...,t2"] (C K]t]): semigroup ring
K[X] := K[x1, X2, . .., X]: polynomial ring over K

Ia = (x" —x" € K[x] | Au = Av) toric ideal of A

Here, we regard A= (ay,...,a,) as a d x nmatrix.
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111000
000111

A= 100100 |cw
010010
00100 1

KIA] = Klti 83, b1, by 15, bot3, b b, b 85]
Ia = (X1 X5 — XoX4, X1Xg — X3X4, X2Xg — X3Xs5)

I4 is generated by 2-minors of ( X X2 X >
X4 X5 X
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Toric ideals and Statistics

Theorem (Diaconis—Sturmfels)
“a set of binomial generators of 14" = “a Markov basis"

111000 th Uty + Ua + Una

0001 1 1 512 Uoq1 + Uoo + Uo3

1 00100 u13 = Uty + Up

010010 21 Utz + Uso

00100 1 tzz Ui + Uog
Uz3

X1 X5 — XoX4 € Ig < (1,-1,0,-1,1,0)7 +— ( _1 _1 8 )



Introduction
L]

Normal configurations and very ample configurations

(i) = (ii) = (iii) = (iv) = (v) holds for the following:



Introduction
L]

Normal configurations and very ample configurations

(i) = (ii) = (iii) = (iv) = (v) holds for the following:
(However, none of < is false in general.)



Introduction
L]

Normal configurations and very ample configurations

(i) = (ii) = (iii) = (iv) = (v) holds for the following:
(However, none of < is false in general.)

(i) Ais unimodular,i.e., the initial ideal of /4 is generated by
squarefree monomials with respect to any monomial order



Introduction
L]

Normal configurations and very ample configurations

(i) = (ii) = (iii) = (iv) = (v) holds for the following:
(However, none of < is false in general.)

(i) Ais unimodular,i.e., the initial ideal of /4 is generated by
squarefree monomials with respect to any monomial order

(i) Ais compressed, i.e., the initial ideal of /4 is generated by

squarefree monomials with respect to any reverse
lexicographic order



Introduction
L]

Normal configurations and very ample configurations

(i) = (ii) = (iii) = (iv) = (v) holds for the following:
(However, none of < is false in general.)

(i) Ais unimodular,i.e., the initial ideal of /4 is generated by
squarefree monomials with respect to any monomial order

(i) Ais compressed, i.e., the initial ideal of /4 is generated by
squarefree monomials with respect to any reverse
lexicographic order

(iii) There exists a monomial order < such that the initial ideal
of /4 with respect to < is generated by squarefree
monomials



Introduction
L]

Normal configurations and very ample configurations

(i) = (ii) = (iii) = (iv) = (v) holds for the following:
(However, none of < is false in general.)
(i) Ais unimodular,i.e., the initial ideal of /4 is generated by

squarefree monomials with respect to any monomial order

(i) Ais compressed, i.e., the initial ideal of /4 is generated by
squarefree monomials with respect to any reverse
lexicographic order

(iii) There exists a monomial order < such that the initial ideal
of /4 with respect to < is generated by squarefree
monomials

(iv) K[A]is normal,i.e., NA = ZAN QoA



Introduction
L]

Normal configurations and very ample configurations

(i) = (ii) = (iii) = (iv) = (v) holds for the following:
(However, none of < is false in general.)
(i) Ais unimodular,i.e., the initial ideal of /4 is generated by
squarefree monomials with respect to any monomial order

(i) Ais compressed, i.e., the initial ideal of /4 is generated by
squarefree monomials with respect to any reverse
lexicographic order

(iii) There exists a monomial order < such that the initial ideal
of /4 with respect to < is generated by squarefree
monomials

(iv) K[A]is normal,i.e., NA = ZAN QoA
(v) K[A]is very ample,i.e., §{(ZANQ>oA) \ NA| < oco.
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Combinatorial pure subrings

Definition
P4: the convex hull of A
B C A: subset
K[B] is combinatorial pure subring of K[A]
<= dface Fof Pyst. B=ANF

For example, K[B] is a combinatorial pure subring of K[A] if
K[B] = K[AIN K[t ..., ti]

(This is the original definition by Ohsugi—Herzog—Hibi.)
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Fundamental binomials

f € I4: binomial
f is fundamental
<= 3 combinatorial pure subring K[B] of K[A] s.t Is = <f>/

Lemma

If g = u— v € K[X] is a binomial such that neither u nor v is
squarefree and if I4 = (g), then K[A] is not very ample.

If |4 possesses a fundamental binomial g = u — v such that
neither u nor v is squarefree, then K[A] is not very ample.
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The converse of Corollary is not true.

Example

K[A] = Kltibo, ti 5, bots, bola, t3la, lals, lals, t5ts, t5t7, to t7]
Then K[A] is not very ample.
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The converse of Corollary is not true.

Example

KIA] = K[t o, ty 13, bots, boly, B3ty tyts, Luls, tsls, tstr, 5 7]

Then K[A] is not very ample.

However I, is generated by the set of fundamental binomials

{X1 X5 — XoXa, Xs X10 — X7X9, X3Xe X7 — X4X5Xg}.
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Lawrence lifting

AA) = ( ﬁ 2 > : Lawrence lifting of A

Corollary

Let K[A] be a semigroup ring and let K[\(A)] its Lawrence
lifting. Then, the following conditions are equivalent:

@ KIA] is unimodular;
Q K[A(A)] is unimodular;
@ KI[A(A)] is normal;

Q KI[A(A)] is very ample.
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Contingency tables

n>rn>-->m>2
We study configurations arising from no n-way interaction
models for ry x ro x --- x r, contingency tables.

Ar1r2 s —

1 2 )
{eleg /n®e§1l:<); “in D - ®e§1f2 cip_1 Ik€{172a---ark}a1 Skfn}
Here e(k) B iS a unit vector of 71X fk—1Xlicg1+Xn_

J1j2+++Jn
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Contingency tables

n>rn>-->m>2
We study configurations arising from no n-way interaction
models for ry x ro x --- x r, contingency tables.

Ar1r2 sfn =
1 2 .
{efglg /n@efﬂg i D 69951,2 gt ik €{1,2,...,r}, 1 Skﬁn}
Here ef(lj) Jn—1 is a unit vector of Z"1 > Tk=1XTks1--XTln
111000
O 00 1 1 1
Az=|1 00 1 0 0
01 001 O0
001001
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Contingency tables

A222 O O

X X O O|X X O O|X X O O
X O X O|X O X O|X O X O
—
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®000000

Unimodular & compressed

Ay,..r,2 Is the Lawrence lifting of Ay, ....,,.

It is known that Ay, , is unimodular
= Ar,r,2 Is unimodular
= Ay, 1,22 Is unimodular

= Ar,r,2...2 is unimodular

Theorem (Sullivant)

Arr,...r, IS compressed < one of the following holds:
® n =2 (unimodular)
@ n > 3 and rz = 2 (unimodular)
@ n=3andr > rn =r =3 (notunimodular)
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Classification 1

Classification

rnxr unimodular
rf XrhXx2x---x2
rf x3x3 compressed,
not unimodular
Bx5x3
5x4x3
4x4x3 not compressed
otherwise, i.e., not compressed

n>4andrz; >3
n=3andr; >4
n=38,r=38,n>6andr >4
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Very ample

si<riforalllt <i<n
= K|[As,...s,] is @ combinatorial pure subring of K[A,...,].

It is known that Azs3 is not unimodular

4

Agzz3z is not very ample = K[Ar,r,rr,] is not very ample (r3 > 3)

4

Agzazz is not very ample = K[A,...] is not very ample (r3 > 3)

Agzsp...2 is not very ample = K[A,...,,] is not very ample (r3 > 3)
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Very ample

For Ia,,, and la,,,, there exists a fundamental binomial all of
whose monomials are not squarefree.

By Corollary, K[Ag43] is not very ample
= K[Ar 3] (n > 6and r, > 4)is not very ample

By Corollary, K[As44] is not very ample
= K[Annr] (n=3and ry > r, > r3 > 4)is not very ample
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Classification 2

Classification

rnxr unimodular
rf XrhXx2x---x2
rf x3x3 compressed,
not unimodular
5x5x3
5x4x3
4x4x3 not compressed
otherwise, i.e.,
n>4andrz; >3 not normal,
n=3andr; >4 not very ample

n=38,r=38,n>6andr >4




Contingency tables

0000080

The computational proofs that
5 x 5 x 3 contingency tables is normal
are given in the paper

W. Bruns, R. Hemmecke, B. Ichim, M. Képpe, C. Séger,
Challenging computations of Hilbert bases of cones associated
with algebraic statistics, Jan. 2010.

The computations are based on extensions of the packages
LattE-4ti2 and Normaliz.
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Classifications 3

Classification

rnxr unimodular
rf XrhXx2x---x2
rf x3x3 compressed,
not unimodular
5x5x3 normal
5x4x3 (by 4ti2 & Normaliz)
4x4x3 not compressed
otherwise, i.e.,
n>4andr; >3 not normal,
n=3andr; >4 not very ample
n=3,3=3,rn>6andr >4
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