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@ A new algorithm to compute inhomogeneous differential
equations for definite integrals.

@ Our algorithm is based on integration algorithm for
D-modules, i.e. Grobner basis methods in D.

@ Example

b
F(x) = f e~ dy
a

Q7x30*+54x20,+6x+1)-F(x) = —[(9t*x>=312x—6tx+1)e " ~*'|!=0
X t=a

@ The Almkvist-Zeilberger algorithm, The Chyzak algorithm,
The Oaku-Shiraki-Takayama algorithm.
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@ 0; = % differential operator of x;
@ Weyl Algebra in n variables x1,--+ , x,

D= C(xla"' s Xms Xm+1s°°* ’xnyala'“ 7am9am+19"' 9an)9
@ Weyl Algebra in n — m variables x;;41,+*+ , X, (m < n)

D' = CXms15°** s Xns Oty ,0n)

D’ is a subring of D.
@ Commutative relations

Oix; = x;0; +1, x;0; =9;x; (i %))

XiXj = XjXi, 6,'61' = 6,'81'
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Integration ideal

Definition

The integration ideal of a left D-ideal I with respect to the variables
X1, 4 X5 IS the left D’-ideal

J=UI+61D+---+8,D)n D’.

@ I+01D+:--+9,D is not a left D-ideal.

@ To compute an integration ideal, we cannot simply apply the
elimination method by the Grébner basis in D.
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Integration algorithm for D-modules

Algorithm (Integration algorithm for D-modules (Oaku))

Input: Generators of holonomic left D-ideal 1
Output : Generators of integration ideal of I with respect to
XlgeeeoXm

@ Set a weight vectorw = (Wi, yWpy 0,¢++ ,0)  (w; > 0),
where w; means the weight of d; and —w; means the weight of
Xi.

@ Compute the Grébner basis with respect to a monomial order
<(-w,w) in D.

@ Compute generic b-function b(s) of a holonomic D-ideal with
repect to the weight vector w.

@ Compute the left D’-module (D’)" /M which is isomorphic to
the integration module D/(I + 81D + -+ + 0,,D). Here, r is
detemined by the maximal non-integer root of b(s) = 0.

@ Compute the Grébner basis of M in the left D’-module (D’)".
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Application of integration ideals

We consider a definite integral of f(x1,...,x,) with respect to x1
b
F(x25---’xn) = f .f(xly"' 9xn)dxl°
a
Q@ I=Annpf:={PeD|P-f=0}
© The integration ideal of I with respect to x; is
J=(1+61D)nD’ D’=C<x27"'7xn562,"',an>'

© Take an element P € J. There exists Py € I and P; € D such
that
P= P() + 61P1.

© Apply P to the integral F.

b b
P'F(x29"'9xn)=f P'fdx1=f(P0+31P1)'fdx1
a a

b
=f 01Py - fdx; = [Pl‘f]ﬁ:fz
a
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(oo}

F(x) = e~ 4y (Oaku’s text book “D-module and

computer_r?loath” Ex5.19.)

@ Theintegrand f(t,x) = e~""=* is annihilated by the
holonomic ideal

I=(0; +4t3 +3x12,0, + 3).
@ The integration ideal of I with respect to ¢ is
J = (P,Q) = (64x?3° — (27x° + 128x)3> — (81x* - 128)3, — 15x°,
649% - 27x%9, — 216x°9, — 399x0, — 45).

© The operator Pis P = Py + 0;P1 (Py € I, P, € D).
© We apply the operator P to the integral F

P-f e't4_xt3dt=f P-e"4"‘t3dt=f @, Py) - e~ dt

— f at(Pl . e—t4_xt3)dt — [Pl . e—t4—xt3]t=oo -0

t=—o0
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Our algorithm 1

Theorem-Algorithm (Computing inhomogeneous parts of an

integration ideal)

Let J be the integration ideal of a holonomic left D-ideal I with
respect to x1,+ ¢+ , Xm-

J=U+0D+---0,D)n D’

Then, for any P € J, we can compute Py € I, Py,--- , P, € D
such that
P=Py+01P1+:--+0,Pn
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F(x) = f e~ '-x gy
0
@ Integration ideal J
J =(P,Q) = (64x?3> — (27x° + 128x)3> — (81x* — 128)d, — 15x°,
640 — 27x°9, - 216x*9, — 399x0, — 45).
© Compute inhomogeneous parts Py of P by using our
algorithm. (P = Py + 0,P1,(Py € 1, P; € D))
1
Py = §{81x53x - 27x*td, — x*(2007 — 1920,8, + 5763;)
- x(1129, — 7049,) — 256}

© Apply the operator P to the integral F.
Pof e—t4_xt3dt = f 3t(P1 . e_t4_xt3)dt — [Pl . e_t4_xt3]t=oo
0 0 t=0
= [(16x266 — 1236 + 9x*r* + 32x6® — 150 + 32)e |

=-32
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Our algorithms 2

Theorem-Algorithm
We set

b
F(xZ’“-’xn) = f f(x)dxl'

We can obtain holonomic inhomogeneous differential equations for the
integral F from a holonomic ideal annihilating the integrand f.

Theorem-Algorithm
We set

| A\

b1 b
F(Xpmi15e-5%n) =f "'f Sf(x)dxy ---dxp.

We can obtain inhomogeneous differential equations for the integral F
from a holonomic ideal annihilating the integrand f.
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@ Algorithm computing inhomogeneous parts of an integration
ideal

@ Algorithm computing inhomogeneous differential equations for
a definite integral

© Implementation of these algorithms to computer algebra
system Risa/Asir (nk_restriction.rr)
e Reference

@ H.Nakayama, K.Nishiyama: nk_restriction.rr,
http://www.math.kobe-u.ac.jp/ nakayama/nk restriction.rr
@ H. Nakayama, K. Nishiyama: An algorithm of computing

inhomogeneous differential equations for definite integrals,
arXiv:1005.3417
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