
'

&

$

%

Some optimal criteria of model-robustness for
two-level non-regular fractional factorial designs

Satoshi Aoki (Kagoshima Univ.)

JST CREST Conference in Osaka
29 June 2010

1



'

&

$

%

Contents

1. Introduction

2. GMA criterion

3. Optimal criteria for model-robustness

4. Empirical studies

5. Summary

2



'

&

$

%

1. Introduction

• Regular designs have many merits in two-level

fractional factorial designs.

◦ Elegant theory based on a linear algebra over

GF (2) is established.

◦ Many desirable properties (orthogonality,

balanced etc)

◦ Concepts such as resolution and aberration

can be considered easily.

Only drawback: run size must be a power of 2.

=⇒ non-regular designs are also important.
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• designs of m factors with n runs

• Fundamental question: How to choose a

non-regular design for given (m,n) ?

• Generalized Minimum Aberration criterion

(Deng and Tang, 1999)

◦ Extension of Minimum Aberration criterion

for non-regular designs

◦ MA criterion (Fries and Hunter, 1980):

criterion based on the hierarchical assumption

Lower order interaction is more important.

Resolution III < Resolution IV < Resolution V
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• GMA criterion is a natural extension of MA

criterion

• Cheng, Deng and Tang (2002):

evaluate GMA criterion from the viewpoint of

model-robustness

In this study, we give an extension of Cheng,

Deng and Tang (2002)

See Aoki (2010) AISM for detail.
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• Another motivation:

Affinely full-dimensional factorial design

(Aoki and Takemura, 2009)

• Aoki and Takemura (2009):

We give a new class of non-regular design and

investigate its property from the viewpoint of

D-optimality for the main effect model.

=⇒ However, characteristic for the models

including interaction effects is unknown.

In this study, relation among the affinely

full-dimensionality, GMA criterion and our

proposed criterion are shown.
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2. GMA criterion

• d: design of m factors with n runs

• d is shown as an n×m matrix X(d) ∈ {−1, +1}n×m.

• S = {j1, . . . , js} ⊆ {1, . . . , m}: subset of {1, . . . , m}

• xS(d): component-wise product of the j1, . . . , js-th

columns of X(d).

◦ xS(d) is a column vector.

◦ Write the component-wise product of two column vectors

as ¯,

xS(d) ¯ xT (d) = xS4T (d)

holds, where

S4T = (S ∪ T ) \ (S ∩ T ).
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• |S|: cardinality of S

• jS(d): sum of the elements of xS(d)

• Define Bs(d) characteristic as

Bs(d) =
∑

S: |S|=s

(
jS(d)

n

)2

for s = 1, . . . ,m.
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• Example: 25−2
III design (ABD = ACE = I)

A B C D E

1 1 1 1 1

1 1 −1 1 −1

1 −1 1 −1 1

1 −1 −1 −1 −1

−1 1 1 −1 −1

−1 1 −1 −1 1

−1 −1 1 1 −1

−1 −1 −1 1 1

From x{1,2,4}(d) = (1, 1, 1, 1, 1, 1, 1, 1)′,

j{1,2,4}(d) = 8

Similarly, j{1,3,5}(d) = j{2,3,4,5}(d) = 8

jS(d) = 0 for all the other S

Therefore we have

B1(d) = B2(d) = 0

B3(d) =

„

8

8

«2

+

„

8

8

«2

= 2

B4(d) =

„

8

8

«2

= 1
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• There is one-to-one relation between

design d and jS(d), S ⊆ {1, . . . , m}
◦ The relation to the indicator function is also

given (jS(d)/n = bS/b∅).

j{1,2,4}(d) = j{1,3,5}(d) = j{2,3,4,5}(d) = 8

f(x) =
1

4
+

1

4
(x1x2x4 + x1x3x5 + x2x3x4x5)

◦ For regular designs, jS(d)/n must be one of

{−1, 0, 1}
(⇐⇒ All the nonzero coefficient equal to the

constant term in the indicator function.)
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• Bs(d), s = 1, . . . ,m has the information of the

aberration of the design d.

◦ B1(d) = 0 if the levels are equireplicated for

each factor.

◦ B2(d) = 0 for the orthogonal designs.

◦ B3(d) = 0 for regular designs of the resolution

IV.

◦ B3(d) = B4(d) = 0 for regular designs of the

resolution V.
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• GMA criterion (Tang and Deng, 1999)

sequentially minimize B1(d), B2(d), . . . , Bm(d).

• Affinely full-dimensional factorial design

(Aoki and Takemura, 2009)

|jS(d)/n| < 1 for all S ⊂ {1, . . . , m}.
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• Relation between GMA criterion and

affinely full-dimensionality

From the definition Bs(d) =
∑

S: |S|=s

(
jS(d)

n

)2

,

restriction

∣∣∣∣
jS(d)

n

∣∣∣∣ < 1 coincides with minimizing

Bs(d), s = |S| to some extent.

◦ GMA: minimizing B1(d), B2(d), . . . sequentially

◦ aff. full-dim: minimizing B1(d), B2(d), . . .

simultaneously

We investigate this relation from the viewpoint

of the model-robustness.
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3. Optimal criteria for model-robustness

• We are interested in robust designs when the

interaction effects cannot be ignored.

• Situation considered:

◦ all the main effects are of primary interest

and their estimates are required.

◦ there are f active two-factor interaction and g

active three-factor interaction effects, but

which of two- and three-factor interactions

are active is unknown.

◦ all the four- and higher-factor interactions are

negligible.
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• P: set of all the subsets of the size two from

{1, . . . , m}, i.e., P = {{1, 2}, {1, 3}, . . . , {m − 1,m}}.

|P| =

(
m

2

)
= F

• Q: set of all the subsets of the size three from

{1, . . . , m}, i.e.,

Q = {{1, 2, 3}, {1, 2, 4}, . . . , {m − 2,m − 1,m}}

|Q| =

(
m

3

)
= G

• F ⊂ P ,G ⊂ Q: active two- and three–factor

interaction effects.

|F| = f, |G| = g
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• F ,G are unknown. However, it is natural to

restrict the models to satisfy the following

hierarchical assumption:

Definition F and G are called hierarchically

consistent if

(i1, i2, i3) ∈ G =⇒ (i1, i2), (i1, i3), (i2, i3) ∈ F .
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• For given F ,G, we consider the linear model

y = µ1n + X(d)β1 + YF(d)β2 + ZG(d)β3 + ε.

◦ y: n × 1 vector of observations

◦ µ: mean parameter

◦ X(d): n × m matrix

◦ β1: m × 1 vector of the main effect

◦ YF (d): n × f matrix consisting of the columns xS(d), S ∈ F

◦ β2: f × 1 vector of active two-factor interaction

◦ ZG(d): n × g matrix consisting of the columns xS(d), S ∈ G

◦ β3: g × 1 vector of active three-factor interaction

◦ ε: random vector satisfying E(ε) = 0, var(ε) = σ2In
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• Write XF ,G = [1n
... X(d)

... YF(d)
... ZG(d)].

• The information matrix of d:

MF,G(d) =
1

n
XF,G(d)′XF,G(d)

=

2

6

6

6

6

6

4

1 1
n
1′

nX(d) 1
n
1′

nYF (d) 1
n
1′

nZG(d)

1
n
X(d)′1n

1
n
X(d)′X(d) 1

n
X(d)′YF (d) 1

n
X(d)′ZG(d)

1
n
YF (d)′1n

1
n
YF (d)′X(d) 1

n
YF (d)′YF (d) 1

n
YF (d)′ZG(d)

1
n
ZG(d)′1n

1
n
ZG(d)′X(d) 1

n
ZG(d)′YF (d) 1

n
ZG(d)′ZG(d)

3

7

7

7

7

7

5

• If the model F ,G is known, we can rely on

various optimal criteria based on MF ,G(d) to

choose d.

For example, D-optimal design is to maximize det MF,G(d).
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• For unknown F ,G, we consider the average

performance over all possible combinations of f

two-factor and g three-factor interactions.

• This corresponds to consider the expectation

Df,g = Ep[det MF ,G(d)] for the uniform distribution

p(F ,G) =

{
Const, if F and G are hierarchically consistent

0, otherwise

over 2P , 2Q.

We call this Df,g-optimal criterion.
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• However, it is difficult to evaluate det MF ,G(d).

We consider minimizing tr(MF ,G(d))2 instead of

maximizing det MF ,G(d).

It is known that this is a good surrogate (Cheng, 1996).

• Since all the diagonal elements of MF ,G(d) is 1,

minimizing Ep[tr(MF ,G(d))2] is equivalent to

minimizing

S2
f,g = Ep

[∑
(off-diagonal elements of MF ,G(d))2

]

We call this as S2
f,g-criterion.
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• It is also difficult to derive a closed-form

expression of S2
f,g in general.

In this study, expressions of S2
f,g for some

specific settings are shown.

• Approach: evaluate the off-diagonal elements of

the information matrix, respectively.

S2
f,g = 2B1(d) + 2B2(d) + 2Ep

2

4

1

n2

X

S∈F
(jS(d))2

3

5 + 2Ep

2

4

1

n2

m
X

i=1

X

S∈F
(j{i}4S(d))2

3

5

+Ep

2

6

6

6

6

4

1

n2

X X

S,T∈F
S 6=T

(jS4T (d))2

3

7

7

7

7

5

+ 2Ep

2

4

1

n2

X

S∈G
(jS(d))2

3

5 + 2Ep

2

4

1

n2

m
X

i=1

X

S∈G
(j{i}4S(d))2

3

5

+2Ep

2

4

1

n2

X

S∈F

X

T∈G
(jS4T (d))2

3

5 + Ep

2

6

6

6

6

4

1

n2

X X

S,T∈G
S 6=T

(jS4T (d))2

3

7

7

7

7

5
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• Point: S2
f,g is expressed as a linear combination

of B1(d), B2(d), . . . , B6(d) if the support of p(F ,G)

is symmetric over {1, . . . , m}.
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• Theorem S2
f,0 is expressed as S2

f,0 =
4∑

s=1

asBs(d),

where

a1 = 2

„

1 +
f(m − 1)

F

«

,

a2 = 2

„

1 +
f

F
+

f(f − 1)

F (F − 1)
(m − 2)

«

,

a3 =
6f

F
, a4 =

6f(f − 1)

F (F − 1)
.

We have a1 > a2 > a3 > a4 for m > 3.

• This is an optimal criterion for the case that

three-factor interaction is negligible and there

are f active two-factor interactions.
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• Theorem S2
F,g is expressed as S2

F,g =
6∑

s=1

asBs(d),

where

a1 = 2m +
g(m − 1)(m − 2)

G
,

a2 = 2m +
2g(m − 2)

G
+

g(g − 1)(m − 2)(m − 3)

G(G − 1)
,

a3 = 6 +
2g

G
+

6g(m − 3)

G
,

a4 = 6 +
8g

G
+

6g(g − 1)(m − 4)

G(G − 1)
, a5 =

20g

G
, a6 =

20g(g − 1)

G(G − 1)

We have a1 > a2 > a3 > a4 > a5 > a6 for m > 5.

• This is an optimal criterion for the case that all

the two-factor interactions are active and there

are g active three-factor interactions.

24



'

&

$

%

• Theorem S2
3,1 is expressed as S2

3,1 =
4∑

s=1

asBs(d),

where

a1 = 2

„

1 +
9

m

«

,

a2 = 2

„

(m − 1) +
4(m − 2)

G

«

,

a3 =
2(3m − 5)

G
, a4 =

8

G

We have a2 > a1 > a3 > a4 for m > 3.

• This is an optimal criterion for the case that

there is one active three-factor interaction and

three active two-factor interactions included in

the three-factor interaction hierarchically.
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• From the coefficients of S2
f,g =

∑
s asBs(d), the

relations among the GMA criterion, aff. full-dim

design and the robust designs are shown.

• For example of S2
F,g, since a1 > · · · > a6 holds for

m ≥ 5, there is a consistency between the GMA

criterion and the S2
F,g-criterion for m ≥ 5 to some

extent.

• On the other hand, a1 < a2 holds for S2
3,1.

Therefore S2
3,1-criterion puts the importance on

the orthogonality rather than the equireplicated

design.
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4. Empirical studies

• We consider the S2
f,0- and S2

3,1-optimal design for

5 factor designs with 12 runs.

• An important point:

the existence of Hadamard matrices

It is easy to construct designs with B1(d) = B2(d) = 0.

We are interested in the existence of the robust

resigns satisfying B1(d) 6= 0 or B2(d) 6= 0.
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• Result: S2
f,0-, S2

3,1-optimal design

1 1 1 1 1

1 1 −1 −1 −1

1 −1 1 1 −1

1 −1 1 −1 1

1 −1 −1 1 1

−1 1 1 1 −1

−1 1 1 −1 1

−1 1 −1 1 1

−1 −1 1 1 1

−1 −1 1 −1 −1

−1 −1 −1 1 −1

−1 −1 −1 −1 1
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• For S2
f,0-, S2

3,1-optimal designs (ds),

B1(ds) = 0.138889, B2(ds) = 0,

B3(ds) = 0.27778, B4(ds) = 0.5556

holds. On the other hand, for Hadamard design

(dh),

B1(dh) = B2(dh) = 0,

B3(dh) = 1.1111, B4(dh) = 0.5556

holds, which is GMA optimal design.

S2
1,0 S2

2,0 S2
3,0 S2

4,0 S2
5,0 S2

3,1

ds 0.5556 0.9074 1.3333 1.8333 2.4074 1.7778

dh 0.6667 1.4074 2.2222 3.1111 4.0741 2.6667
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• All these optimal designs are also affinely

full-dimensional.

Therefore the simple strategy that “choose 12 points from

regular designs” is bad from the both optimality.
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5. Summary

• We formalize a method to construct a robust

two-level fractional factorial designs.

• It is true that the assumption that the

experimenters only have an information on the

number of the interactions in the true model

seems unnatural in actual situations. However,

we think that the S2
f,g values for small f, g can be

used to evaluate the model-robustness. Here we

regard f and g as the degree of contamination of

interactions.
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• Though the calculations of S2
f,g for large f, g will

be rather complicated, they are indeed based on

a simple counting.

• In application, there are also many important

situation that the support of p(F ,G) is

asymmetric.

• For the cases of asymmetric support, the

evaluation of S2
f,g will be very difficult

since S2
f,g cannot be expressed as a linear

combination of Bs(d).
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