Computing multiplier ideals in Macaulay2

(Joint work with Christine Berkesch)

Anton Leykin

Georgia Tech

Osaka, June 2010

Analysis

- For a polynomial f, the function $|f|^{\lambda}$ is locally integrable $\operatorname{Re} \lambda>0$.
- Hence, $|f|^{\lambda}$ is a generalized function defined on
$\{\lambda: \operatorname{Re} \lambda>0\} \subset \mathbb{C}$ that depends analytically on λ.
- Gelfand [1957]: Does it extend to a meromorphic function on \mathbb{C} ?
- I. N. Bernstein [1968]: Yes. The poles are contained in a finite number of arithmetic progressions.
- Key ingredients: resolution of singularities and being able to write a functional equation

$$
b(s) f^{s}=P \cdot f^{s+1}
$$

when f is a monomial. (Here: $b(s)$ is a univariate polynomial and P is a linear differential operator with coefficients in $\mathbb{C}[\boldsymbol{x}, s]$.)

Invariants in singularity theory

Definition (Multiplier ideal for $\boldsymbol{f}=\left(f_{1}, \ldots, f_{r}\right)$)

$$
\mathcal{J}\left(\boldsymbol{f}^{c}\right)=\left\{h \in \mathbb{C}[x]: \frac{|h|^{2}}{\left(\sum\left|f_{i}\right|^{2}\right)^{c}} \text { is locally integrable }\right\} .
$$

For $r=1$, it is the ideal of h, that make $\frac{|h|}{\left|f_{1}\right|^{c}}$ locally integrable.

- Algebrao-geometric definition: via log-canonical resolutions.
- Jumping coefficients of f : rational numbers

$$
0=\xi_{0}<\xi_{1}<\xi_{2}<\cdots
$$

such that $\mathcal{J}\left(\boldsymbol{f}^{c}\right)$ is constant exactly for $c \in\left[\xi_{i}, \xi_{i+1}\right)$.

- ξ_{1} is called the log-canonical threshold.
- These invariants measure singularities of the corresponding variety; in particular, they depend only on the ideal $\langle\boldsymbol{f}\rangle$.

Weyl algebra

- Let K be a field of characteristic zero. (Think: $K=\mathbb{C}$)
- Affine space: $X=K^{n}$.
- Weyl algebra: an associative algebra

$$
D_{X}=K\langle\boldsymbol{x}, \boldsymbol{\partial}\rangle=K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle
$$

where $\left[\partial_{i}, x_{i}\right]=\partial_{i} x_{i}-x_{i} \partial_{i}=1$ and all other pairs of generators commute.

- D_{X} is isomorphic to the algebra of linear differential operators with polynomial coefficients.
- Every element has the normal form

$$
Q=\sum_{\alpha, \beta \in \mathbb{Z}^{n}} c_{\alpha \beta} \boldsymbol{x}^{\alpha} \boldsymbol{\partial}^{\beta},
$$

where finitely many of $c_{\alpha \beta} \in K$ are nonzero.

D-modules

- D_{X} is simple: only trivial two-sided ideals.
- Today we consider only left ideals and left D_{X}-modules.
- Examples of D-modules: $K[\boldsymbol{x}], K[[\boldsymbol{x}]], C^{\infty}(X)$.
- Another example: localization $K\left[\boldsymbol{x}, f^{-1}\right]$ where f is a nonzero polynomial:

$$
\begin{aligned}
x_{i} \cdot g f^{-j} & =x_{i} g f^{-j} \\
\partial_{i} \cdot g f^{-j} & =\left(\frac{\partial g}{\partial x_{i}} f-j g\right) f^{-j-1}
\end{aligned}
$$

for $1 \leq i \leq n, g \in K[\boldsymbol{x}]$, and $j \in \mathbb{Z}$.

- Software:
- kan/sm1 (Takayama)
- risa/asir (Noro)
- dmod.lib, Singular (Levandovsky et al.)
- D-modules, Macaulay2 (L., Tsai)

Gröbner bases

- D_{X} is Gröbner-friendly: D_{X} is an algebra of solvable type.
- Gröbner bases can be computed with respect to any w-compatible monomial order, where $w=\left(w_{\boldsymbol{x}}, w_{\boldsymbol{\partial}}\right) \in \mathbb{R}^{2 n}$ satisfies $w_{\boldsymbol{x}}+w_{\boldsymbol{\partial}} \geq 0$ componentwise.
Several ways to define dimension of an ideal I :
- Gelfand-Kirillov dimension;
- dimension of the initial ideal $\mathrm{in}_{w}(I) \subset \operatorname{gr}_{w} D_{X}$, where the latter is a polynomial ring in $2 n$ variables when $w_{\boldsymbol{x}}+w_{\boldsymbol{\partial}}>0$.

Theorem (Fundamental theorem of algebraic analysis)
Let I be a nonzero left ideal in D_{X}, then $n \leq \operatorname{dim} I \leq 2 n$,

Holonomic D-modules

- An ideal (or a D-module) is called holonomic if its dimension equals n.
- Examples:
- any nontrivial principal ideal in case $r=1$;
- D_{X}-module $K[\boldsymbol{x}]$;
- D_{X}-module $K[\boldsymbol{\partial}]$;
- localization $K\left[\boldsymbol{x}, f^{-1}\right]$.
- Theorem: Every holonomic D-module is cyclic.
- Every holonomic $M=D_{X} \xi$ can be thought of as

$$
M \cong D_{X} / \operatorname{Ann}_{D_{X}}(\xi)
$$

Back to the problem...

- Recall: $D_{X}=K\langle\boldsymbol{x}, \boldsymbol{\partial}\rangle$ the Weyl algebra on $X=K^{n}$.
- $D_{Y}=K\left\langle\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}, t, \partial_{t}\right\rangle$, the Weyl algebra on $Y=X \times K$.
- $V^{\bullet} D_{Y}$ is the V-filtration of D_{Y} along X :

$$
V^{m} D_{Y}=D_{X} \cdot\left\{t^{\mu} \partial_{t}^{\nu} \mid \mu-\nu \geq m\right\} .
$$

- V-filtration introduced by Kashiwara and Malgrange in 1980's.

Global Bernstein-Sato polynomial

- Action of D_{Y} on $N_{f}:=K[\boldsymbol{x}]\left[f^{-1}, s\right] f^{s}$:
- x_{i} and $\partial_{x_{i}}$ act naturally for $i=1, \ldots, n$;
- for $h \in K[\boldsymbol{x}]\left[f^{-1}, s\right]$,

$$
\begin{aligned}
t \cdot h(\boldsymbol{x}, s) f^{s} & =h(\boldsymbol{x}, s+1) f f^{s} \\
\partial_{t} \cdot h(\boldsymbol{x}, s) f^{s} & =-\operatorname{sh}(\boldsymbol{x}, s-1) f^{-1} f^{s}
\end{aligned}
$$

- For $f \in K[\boldsymbol{x}]$, the global Bernstein-Sato polynomial b_{f} of f, is the monic polynomial $b(s) \in K[s]$ of minimal degree such that

$$
b(s) f^{s}=P f f^{s}
$$

for some $P \in D_{X}\left\langle-\partial_{t} t\right\rangle$.

- Alternatively, let $M_{f}:=K[\boldsymbol{x}] \otimes_{K} K\left\langle\partial_{t}\right\rangle$ with actions of a vector field ξ on X and t :

$$
\begin{aligned}
\xi\left(p \otimes \partial_{t}^{\nu}\right) & =\xi p \otimes \partial_{t}^{\nu}-(\xi f) p \otimes \partial_{t}^{\nu+1} \\
t \cdot\left(p \otimes \partial_{t}^{\nu}\right) & =f p \otimes \partial_{t}^{\nu}-\nu p \otimes \partial_{t}^{\nu-1}
\end{aligned}
$$

- $b_{f}=$ minimal polynomial of the action of $\sigma=-\partial_{t} t$ on $\left(V^{0} D_{Y}\right) \delta /\left(V^{1} D_{Y}\right) \delta$ with $\delta=1 \otimes 1 \in M_{f}$.

Computing Bernstein-Sato polynomial

The first general algorithm is due to T. Oaku (1997).

- Let $I_{f}=\left\langle t-f, \partial_{1}+\frac{\partial f}{\partial x_{1}} \partial_{t}, \ldots, \partial_{n}+\frac{\partial f}{\partial x_{n}} \partial_{t}\right\rangle$.
- For the weight vector $w=(\mathbf{0}, 1) \in \mathbb{R}^{n} \times \mathbb{R}$, compute in $_{(-w, w)} I_{f}$ via Gröbner bases.
- $\left\langle b_{f}(\sigma)\right\rangle=\operatorname{in}_{(-w, w)} I_{f} \cap K[\sigma] . \leftarrow$ expensive elimination step

A shortcut (first used by Noro):

1. Let G be a Gröbner basis of $\operatorname{in}_{(-w, w)} I_{f}$;
2. Find the smallest d such that the normal forms $\mathrm{NF}_{G}\left(\sigma^{i}\right)$ for $0 \leq i \leq d$ are K-linearly dependent;
3. If $\mathrm{NF}_{G}\left(\sigma^{d}\right)+\sum_{i=0}^{d-1} c_{i} \mathrm{NF}_{G}\left(\sigma^{i}\right)=0$ then $b_{f}(s)=s^{d}+\Sigma_{i=0}^{d-1} c_{i} s^{i}$.

Related work

- global b-function algorithms:
- Briancon-Maisonobe alternative (Castro-Ucha, Levandovskyy et al.)
- modular methods (Noro)
- local b-function (Oaku, Nakayama, Nishiyama-Noro);
- b-ideal (Bahloul-Oaku).

Bernstein-Sato polynomial for an arbitrary variety

- Let $\boldsymbol{f}=f_{1}, \ldots, f_{r} \in K[\boldsymbol{x}], \boldsymbol{f}^{\boldsymbol{s}}=\prod_{i=1}^{r} f_{i}^{s_{i}}$, and $Y=K^{n} \times K^{r}$ with coordinates $(\boldsymbol{x}, \boldsymbol{t})$.
- Action of $D_{Y}=K\left\langle\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{t}}\right\rangle$ on $N_{f}:=K[\boldsymbol{x}]\left[\boldsymbol{f}^{-1}, \boldsymbol{s}\right] \boldsymbol{f}^{\boldsymbol{s}}$ generalizes the action in the case $r=1$.
- Let $\sigma=-\left(\sum_{i=1}^{r} \partial_{t_{i}} t_{i}\right)$.
- The generalized Bernstein-Sato polynomial $b_{\boldsymbol{f}, g}$ of \boldsymbol{f} at $g \in K[\boldsymbol{x}]$ is the monic polynomial $b \in \mathbb{C}[s]$ of the lowest degree for which there exist $P_{k} \in D_{X}\left\langle\partial_{t_{i}} t_{j} \mid 1 \leq i, j \leq r\right\rangle$ for $k=1, \ldots, r$ such that

$$
b(\sigma) g \boldsymbol{f}^{s}=\sum_{k=1}^{r} P_{k} g f_{k} \boldsymbol{f}^{s}
$$

- When $r=1$, we have $b_{f, 1}=b_{f_{1}}$.

Connection between multiplier ideals and b-function

- The log-canonical threshold c_{0} is the lowest root of $b_{\boldsymbol{f}}(-s)$.
- Every jumping coefficient $c \in\left[c_{0}, c_{0}+1\right)$ is a root of $b_{\boldsymbol{f}}(-s)$.
- The following provides a membership test.

Theorem (Budur-Mustaţă-Saito)
Let $g \in K[x]$ and fix a positive rational number c. Then

$$
g \in \mathcal{J}\left(\boldsymbol{f}^{c}\right) \Leftrightarrow c<\text { roots of } b_{\boldsymbol{f}, g}(-s) .
$$

- Let $M_{f} \cong K[\boldsymbol{x}] \otimes_{K} K\left\langle\boldsymbol{\partial}_{\boldsymbol{t}}\right\rangle$ with the action of D_{Y} (similar to that on $\left.M_{f}\right) ; M_{f}$ is equipped with the V-filtration.
- Let $\delta=1 \otimes 1 \in M_{f}$, consider:

$$
\bar{M}_{f}^{(m)}=\left(V^{0} D_{Y}\right) \delta /\left(V^{m} D_{Y}\right) \delta .
$$

- The m-generalized Bernstein-Sato polynomial $b_{f, g}^{(m)}$ is the monic minimal polynomial of the action of σ on $\left(V^{0} D_{Y}\right) \overline{g \otimes 1} \subseteq \bar{M}_{f}^{(m)}$.
- $b_{\boldsymbol{f}, \boldsymbol{g}}^{(m)}$ is equal to the monic polynomial $b(s)$ of minimal degree such that there exist $P_{k} \in D_{X}\left\langle-\partial_{t_{i}} t_{j} \mid 1 \leq i, j \leq r\right\rangle$ and $h_{k} \in\langle\boldsymbol{f}\rangle^{m}$ for which in $N_{\boldsymbol{f}}$:

$$
b(\sigma) g \boldsymbol{f}^{\boldsymbol{s}}=\sum_{k=1}^{r} P_{k} h_{k} \boldsymbol{f}^{\boldsymbol{s}} .
$$

- For a polynomial $g \in K[\boldsymbol{x}]$ so that $g \otimes 1 \in M_{f}, b_{\boldsymbol{f}, g}$ is the monic minimal polynomial of σ on

$$
\bar{M}_{g}:=\frac{\left(V^{0} D_{Y}\right)(g \otimes 1)}{\left(V^{1} D_{Y}\right)(g \otimes 1)} .
$$

- Since $\left(V^{0} D_{Y}\right) \overline{g \otimes 1} \subseteq \bar{M}_{f}^{(1)}$ is a quotient of \bar{M}_{g}, the polynomial $b_{f, g}$ is a multiple of $b_{f, g}^{(1)}$. When g is a unit, $b_{\boldsymbol{f}, g}=b_{f, g}^{(1)}$ holds, which is not so in general.

Example

When $n=3$ and $\boldsymbol{f}=\sum_{i=1}^{3} x_{i}^{2}$,

$$
b_{\boldsymbol{f}, x_{1}}(s)=(s+1)\left(s+\frac{5}{2}\right) \text { and } b_{\boldsymbol{f}, x_{1}}^{(1)}(s)=s+1 .
$$

In particular, $b_{\boldsymbol{f}, x_{1}}^{(1)}$ strictly divides $b_{\boldsymbol{f}, x_{1}}$.

Theorem (Shibuta)

For $g \in K[\boldsymbol{x}]$ and $c<m+\operatorname{lct}(\boldsymbol{f})$,
$g \in \mathcal{J}\left(\boldsymbol{f}^{c}\right) \Leftrightarrow c<$ every root of $b_{f, g}^{(m)}(-s)$.
In other words,

$$
\mathcal{J}\left(\boldsymbol{f}^{c}\right)=\left\{g \in K[\boldsymbol{x}]: b_{f, g}^{(m)}\left(-c^{\prime}\right)=0 \Rightarrow c<c^{\prime}\right\} .
$$

- Multivariate analogue of the ideal used to compute Ann f^{s} :

$$
I_{f}=\left\langle t_{i}-f_{i} \mid 1 \leq i \leq r\right\rangle+\left\langle\left.\partial_{x_{j}}+\sum_{i=1}^{r} \frac{\partial f_{i}}{\partial t_{j}} \partial_{t_{i}} \right\rvert\, 1 \leq j \leq n\right\rangle
$$

- Let $I_{f}^{*} \subset D_{Y}$ be the ideal of the $(-w, w)$-homogeneous elements of I_{f}. Define:

$$
J_{\boldsymbol{f}}(m)=\left(I_{f}^{*}+D_{Y} \cdot\langle\boldsymbol{f}\rangle^{m}\right) \cap K[\boldsymbol{x}, \sigma],
$$

Lemma
$b_{f, g}^{(m)}$ is the monic polynomial $b(s) \in K[s]$ such that

$$
\langle b(\sigma)\rangle=\left(J_{f}(m): g\right) \cap K[\sigma] .
$$

Algorithm with a "linear algebra" shortcut

Input: $\boldsymbol{f}=\left\{f_{1}, \ldots, f_{r}\right\} \subset K[\boldsymbol{x}], c \in \mathbb{Q}, d_{\max } \in \mathbb{Z}_{\geq 0}$.
Output: $\mathcal{J}\left(\boldsymbol{f}^{c}\right) \subset K[\boldsymbol{x}]$, if generated in degrees at most $d_{\text {max }}$.
1: $m \leftarrow\lceil\max \{c-\operatorname{lct}(\boldsymbol{f}), 1\}\rceil$.
2: $B \leftarrow$ a Gröbner basis of $J_{\boldsymbol{f}}(m)$ w.r.t. any monomial order.
3: Compute $b_{f, 1}^{(m)}=\prod\left(s-c_{i}\right)^{\alpha\left(c_{i}\right)}$.
4: $b^{\prime} \leftarrow \prod_{-c_{i}>c}\left(s-c_{i}\right)^{\alpha\left(c_{i}\right)}$.
5: Find a basis Q for the K-syzygies $\left(q_{\alpha}\right)_{|\alpha| \leq d_{\max }}$ such that

$$
\sum_{\alpha \in A} q_{\alpha} \mathrm{NF}_{B}\left(\boldsymbol{x}^{\alpha} b^{\prime}(\sigma)\right)=0
$$

6: return $\left\{\sum_{\alpha \in A} q_{\alpha} \boldsymbol{x}^{\alpha}:\left(q_{\alpha}\right) \in Q\right\}$.

Example

Consider $f=\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) z$.
Saito: $\frac{5}{7}$ is a root of $b_{f}(-s)$ but not a jumping coefficient. A long computation (about 10 hours) gives:

$$
\mathcal{J}\left(f^{c}\right)= \begin{cases}\mathbb{C}[x, y] & \text { if } 0 \leq c<\frac{3}{7} \\ \langle x, y, z\rangle & \text { if } \frac{3}{7} \leq c<\frac{4}{7} \\ \langle x, y, z\rangle^{2} & \text { if } \frac{4}{7} \leq c<\frac{2}{3} \\ \langle z, x\rangle \cap\langle z, y\rangle \cap & \\ \langle y+z, x+z\rangle \cap\langle y+z, x-z\rangle \cap & \text { if } \frac{2}{3} \leq c<\frac{6}{7}, \\ \langle y-z, x+z\rangle \cap\langle y-z, x-z\rangle & \\ \langle z, x\rangle \cap\langle z, y\rangle \cap & \text { if } \frac{6}{7} \leq c<1 \\ \langle y+z, x+z\rangle \cap\langle y+z, x-z\rangle \cap & \\ \langle y-z, x+z\rangle \cap\langle y-z, x-z\rangle \cap & \\ \left\langle z^{3}, y z^{2}, x z^{2}, x y z, y^{3}, x^{3}, x^{2} y^{2}\right\rangle & \end{cases}
$$

and $\mathcal{J}\left(f^{c}\right)=\langle\boldsymbol{f}\rangle \cdot \mathcal{J}\left(\boldsymbol{f}^{c-1}\right)$ for all $c \geq 1$.

lct in the modern industrial society

Log-canonical threshold in statistics:

- S. Lin, "Asymptotic Approximation of Marginal Likelihood Integrals" (2010)
- S. Watanabe, "Algebraic Geometry and Statistical Learning Theory" (2009)
Main obstacle to application of a D-modules approach:
- Need to compute real Ict.
- M. Saito, "On real log canonical thresholds" (2007):

$$
\text { rlct } \neq \text { lct }
$$

