Algorithmic Desingularization

Anne Frühbis-Krüger

Institut für Algebraische Geometrie Leibniz Universität Hannover

Osaka, June 29th 2010

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Introduction by Pictures: Singularities

$$y^2 - x^2 - x^3 = 0$$

 $x^2 + y^4 - z^4 - 3x^2y^2 = 0 \qquad x^3 + y^3 - z^3 - 11xyz = 0$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Introduction by Pictures: Desingularization

Resolution of $V(y^2 + x^4 - x^5) \subset \mathbb{A}^2$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Resolution of Singularities

K field of characteristic zero for this talk $\mathbb C$

W smooth, puredimensional scheme of dimension $n X \subset W$ reduced subscheme

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularizatior Blowing Up Finding Centers

Resolution of Singularities

K field of characteristic zero for this talk $\mathbb C$

W smooth, puredimensional scheme of dimension $n X \subset W$ reduced subscheme

Simplest Formulation(non-embedded): Find a non-singular \tilde{X} and a proper birational morphism

$$\pi: \tilde{X} \longrightarrow X$$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Resolution of Singularities

K field of characteristic zero for this talk $\mathbb C$

W smooth, puredimensional scheme of dimension $n X \subset W$ reduced subscheme

Simplest Formulation(non-embedded): Find a non-singular \tilde{X} and a proper birational morphism

$$\pi: \tilde{X} \longrightarrow X$$

such that $\operatorname{Reg}(X) \cong \pi^{-1}(\operatorname{Reg}(X))$.

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Blowing up - in Pictures

Idea: Replace a point in the plane by a projective line Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Blowing up - in Pictures

Idea: Replace a point in the plane by a projective line

effect: more room for curves to become smooth

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Blowing up - in Pictures

Idea: Replace a point in the plane by a projective line

effect: more room for curves to become smooth

in pictures (just 1 chart):

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Technical Formulation:

Find a finite sequence of blowing-ups

$$W_r \xrightarrow{\pi_r} \cdots \xrightarrow{\pi_2} W_1 \xrightarrow{\pi_1} W_0 = W$$

at smooth centers $C_i \subset W_i$ such that

Algorithmic Desingularization

A. Frühbis-Krüger

Introductior

Desingularization Blowing Up

Technical Formulation:

Find a finite sequence of blowing-ups

$$W_r \xrightarrow{\pi_r} \cdots \xrightarrow{\pi_2} W_1 \xrightarrow{\pi_1} W_0 = W$$

at smooth centers $C_i \subset W_i$ such that

1. exceptional divisors E_k of $\pi_k \circ \cdots \circ \pi_1$ have normal crossings

Algorithmic Desingularization

A. Frühbis-Krüger

Introductio

Desingularization Blowing Up Finding Centers

Technical Formulation:

Find a finite sequence of blowing-ups

$$W_r \xrightarrow{\pi_r} \cdots \xrightarrow{\pi_2} W_1 \xrightarrow{\pi_1} W_0 = W$$

at smooth centers $C_i \subset W_i$ such that

- 1. exceptional divisors E_k of $\pi_k \circ \cdots \circ \pi_1$ have normal crossings
- 2. C_k have 'normal crossings' with it

Algorithmic Desingularization

A. Frühbis-Krüger

Introductio

Desingularization Blowing Up Finding Centers

Technical Formulation:

Find a finite sequence of blowing-ups

$$W_r \xrightarrow{\pi_r} \cdots \xrightarrow{\pi_2} W_1 \xrightarrow{\pi_1} W_0 = W$$

at smooth centers $C_i \subset W_i$ such that

- 1. exceptional divisors E_k of $\pi_k \circ \cdots \circ \pi_1$ have normal crossings
- 2. C_k have 'normal crossings' with it
- 3. $C_k \cap Reg(X) = \emptyset$

Algorithmic Desingularization

A. Frühbis-Krüger

Introductior

Desingularization Blowing Up Finding Centers

Technical Formulation:

Find a finite sequence of blowing-ups

$$W_r \xrightarrow{\pi_r} \cdots \xrightarrow{\pi_2} W_1 \xrightarrow{\pi_1} W_0 = W$$

at smooth centers $C_i \subset W_i$ such that

- 1. exceptional divisors E_k of $\pi_k \circ \cdots \circ \pi_1$ have normal crossings
- 2. C_k have 'normal crossings' with it
- 3. $C_k \cap Reg(X) = \emptyset$
- 4. strict transform X_r of X under $\pi_r \circ \cdots \circ \pi_1$ is non-singular and has normal crossings with E_r

Algorithmic Desingularization

A. Frühbis-Krüger

Introductio

Desingularization Blowing Up Finding Centers

Technical Formulation:

Find a finite sequence of blowing-ups

$$W_r \xrightarrow{\pi_r} \cdots \xrightarrow{\pi_2} W_1 \xrightarrow{\pi_1} W_0 = W$$

at smooth centers $C_i \subset W_i$ such that

- 1. exceptional divisors E_k of $\pi_k \circ \cdots \circ \pi_1$ have normal crossings
- 2. C_k have 'normal crossings' with it
- 3. $C_k \cap Reg(X) = \emptyset$
- 4. strict transform X_r of X under $\pi_r \circ \cdots \circ \pi_1$ is non-singular and has normal crossings with E_r
- 5. $(W_r, X_r) \longrightarrow (W, X)$ is equivariant under group action

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

► Curves: L.Kronecker, M.Noether, A.Brill, ... (1890s)

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

- Curves: L.Kronecker, M.Noether, A.Brill, ... (1890s)
- Surfaces, local: H.W.Jung (1908)
- Surfaces, global: R.J.Walker (1935)

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

- Curves: L.Kronecker, M.Noether, A.Brill, ... (1890s)
- Surfaces, local: H.W.Jung (1908)
- Surfaces, global: R.J.Walker (1935)

approaches of more algebraic flavor:

- surfaces/3-folds: O.Zariski (1930s/40s)
- general case: H.Hironaka (1964) for charK = 0

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

- Curves: L.Kronecker, M.Noether, A.Brill, ... (1890s)
- Surfaces, local: H.W.Jung (1908)
- Surfaces, global: R.J.Walker (1935)

approaches of more algebraic flavor:

- surfaces/3-folds: O.Zariski (1930s/40s)
- general case: H.Hironaka (1964) for charK = 0

recent developments:

- algorithmic proofs: Bierstone+Milman; Villamayor; Encinas+Hauser (since 1990s)
- implementations: Bodnar+Schicho; FK+Pfister

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Main Algorithmic Tasks

For each blowing up step:

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization

Blowing Up Finding Centers

Main Algorithmic Tasks

For each blowing up step:

- A Blowing up of W_i along a given center C_i
 - ► Groebner basis compution in at least (n + codim(C_i) + 1) variables
 - iterated ideal quotients (=again Groebner bases)
 - algorithmically straight forward, not overly expensive

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Main Algorithmic Tasks

For each blowing up step:

- A Blowing up of W_i along a given center C_i
 - ► Groebner basis compution in at least (n + codim(C_i) + 1) variables
 - iterated ideal quotients (=again Groebner bases)
 - algorithmically straight forward, not overly expensive
- B Finding suitable centers C_i

key difficulty: not all permissible centers improve the situation

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Computing a blowing up

X affine variety, its ideal
$$I_X \subset K[x_1, \dots, x_n]$$

C smooth subvariety of X
(wlog $I_C = \langle f_1, \dots, f_k \rangle$)

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization

Blowing Up Finding Centers

Computing a blowing up

$$X$$
 affine variety, its ideal $I_X \subset K[x_1, \dots, x_n]$
 C smooth subvariety of X
(wlog $I_C = \langle f_1, \dots, f_k \rangle$)

total transform $X'_{total} \subset X \times \mathbb{P}^{k-1}$:

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization

Blowing Up Finding Centers

Computing a blowing up

$$\begin{array}{c} X \text{ affine variety, its ideal } I_X \subset K[x_1, \dots, x_n] \\ C \text{ smooth subvariety of } X \\ (wlog \ I_C = \langle f_1, \dots, f_k \rangle) \\ \text{total transform } X'_{total} \subset X \times \mathbb{P}^{k-1}: \\ \text{ can be computed as preimage of } I_X \text{ under} \\ \Phi : K[x_1, \dots, x_n, y_1, \dots, y_k] \longrightarrow K[x_1, \dots, x_n, t] \\ x_i \longmapsto x_i \\ y_j \longmapsto t \cdot f_j \end{array}$$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization

Blowing Up Finding Centers

$$X = V(z^2 + xy^2)$$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Applications

 $U_x: X_{strict} = V(z^2 + xy^2),$ E = V(x)

smooth

$$X = V(z^2 + xy^2)$$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Algorithmic Desingularization

A. Frühbis-Krüger

Introductior

Desingularization Blowing Up Finding Centers

$$X = V(z^2 - x^2 y^2) \subset \mathbb{A}^3$$

$$X = V(z^2 - x^2 y^2) \subset \mathbb{A}^3$$

Choices of Center:

• Sing(X) singular \implies impossible

Algorithmic Desingularization

A. Frühbis-Krüger

Introductior

Desingularization Blowing Up Finding Centers

$$X = V(z^2 - x^2 y^2) \subset \mathbb{A}^3$$

Choices of Center:

- Sing(X) singular \implies impossible
- V(z,x) is random choice of component \implies not suitable

Algorithmic Desingularization

A. Frühbis-Krüger

Introductior

Desingularization Blowing Up Finding Centers

$$X = V(z^2 - x^2 y^2) \subset \mathbb{A}^3$$

Choices of Center:

- Sing(X) singular \implies impossible
- V(z,x) is random choice of component \implies not suitable
- 0 is only possible choice

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

'worst' points are points of maximal value of a governing invariant \implies upcoming center

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

'worst' points are points of maximal value of a governing invariant \implies upcoming center

Conditions for a suitable governing invariant:

 maximal locus is closed set (Zariski upper semicontinuous)

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

'worst' points are points of maximal value of a governing invariant \implies upcoming center

Conditions for a suitable governing invariant:

- maximal locus is closed set (Zariski upper semicontinuous)
- maximal locus is non-singular and has normal crossing with exceptional divisors

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

'worst' points are points of maximal value of a governing invariant \implies upcoming center

Conditions for a suitable governing invariant:

- maximal locus is closed set (Zariski upper semicontinuous)
- maximal locus is non-singular and has normal crossing with exceptional divisors
- maximal value does not increase under blowing ups

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

'worst' points are points of maximal value of a governing invariant \implies upcoming center

Conditions for a suitable governing invariant:

- maximal locus is closed set (Zariski upper semicontinuous)
- maximal locus is non-singular and has normal crossing with exceptional divisors
- maximal value does not increase under blowing ups
- decrease of maximal value measures progress of desingularization

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

 $(inv_n; inv_{n-1}; ...; inv_2)$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

 $(inv_n; inv_{n-1}; ...; inv_2)$

key point of Hironaka's inductive argument: descent in dimension of the ambient space ';' Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

 $(inv_n; inv_{n-1}; ...; inv_2)$

key point of Hironaka's inductive argument: descent in dimension of the ambient space ';'

general structure of invariant in each dimension

 $inv_i = (ord_w(\mathcal{I}_i), n_{E^{(i)}})$

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

 $(inv_n; inv_{n-1}; ...; inv_2)$

key point of Hironaka's inductive argument: descent in dimension of the ambient space ';'

general structure of invariant in each dimension

 $inv_i = (ord_w(\mathcal{I}_i), n_{E^{(i)}})$

where

 n_{E(i)} counts certain exceptional divisors which meet the point w Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

 $(inv_n; inv_{n-1}; ...; inv_2)$

key point of Hironaka's inductive argument: descent in dimension of the ambient space ';'

general structure of invariant in each dimension

 $inv_i = (ord_w(\mathcal{I}_i), n_{E^{(i)}})$

where

- n_{E(i)} counts certain exceptional divisors which meet the point w
- ord_w(I_i) is the order of an appropriate ideal in the local ring at w
 (the coefficient ideal in ambient dimension i)

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

 $(inv_n; inv_{n-1}; ...; inv_2)$

key point of Hironaka's inductive argument: descent in dimension of the ambient space ';'

general structure of invariant in each dimension

 $inv_i = (ord_w(\mathcal{I}_i), n_{E^{(i)}})$

where

- n_{E(i)} counts certain exceptional divisors which meet the point w
- ord_w(I_i) is the order of an appropriate ideal in the local ring at w
 (the coefficient ideal in ambient dimension i)
- depending on algorithmic approach *inv_n* can also have the Hilbert-Samuel function at *w* as first entry

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Variants in SINGULAR

Variants of embedded desingularization:

- variant of Villamayor's Algorithm (available):
 - + all dimensions
 - $+\ {\rm no}\ {\rm special}\ {\rm conditions}\ {\rm on}\ {\rm ideal}$
 - large amount of data
 - a number of unproductive blowing ups

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Variants in SINGULAR

Variants of embedded desingularization:

- variant of Villamayor's Algorithm (available):
 - + all dimensions
 - + no special conditions on ideal
 - large amount of data
 - a number of unproductive blowing ups
- Bierstone-Milman Algorithm (not available):
 - stratification by Hilbert-Samuel function slow
 - even more data due to further splitting up of charts

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Variants in SINGULAR

Variants of embedded desingularization:

- variant of Villamayor's Algorithm (available):
 - + all dimensions
 - + no special conditions on ideal
 - large amount of data
 - a number of unproductive blowing ups
- Bierstone-Milman Algorithm (not available):
 - stratification by Hilbert-Samuel function slow
 - even more data due to further splitting up of charts
- Blanco's variant for binomial ideals (implemented, not yet in distribution):
 - + computation of center by combinatorial process
 - + faster, total amount of data smaller
- Jung's algorithm for surfaces (implementation FK-Renner):
 - only for surfaces
 - + faster, fewer charts

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

result of resolution process represented in charts

 \Longrightarrow need to extract desired information

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

result of resolution process represented in charts

- \Longrightarrow need to extract desired information
- Huge amount of final charts, even larger amount of intermediate charts
- Passing through the tree of charts

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

result of resolution process represented in charts

- \Longrightarrow need to extract desired information
- Huge amount of final charts, even larger amount of intermediate charts
- Passing through the tree of charts
- Identification of subvarieties in different charts
- Identification of exceptional divisors in different charts

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

result of resolution process represented in charts

- \Longrightarrow need to extract desired information
- Huge amount of final charts, even larger amount of intermediate charts
- Passing through the tree of charts
- Identification of subvarieties in different charts
- Identification of exceptional divisors in different charts
- Separation of C-irreducible components of exceptional divisors

Algorithmic Desingularization

A. Frühbis-Krüger

Introduction

Desingularization Blowing Up Finding Centers

Applications of desingularization

Given $\pi : W \longrightarrow \mathbb{C}^n$ embedded resolution of $V = f^{-1}(0)$, E_i irreducible components of $\pi^{-1}(f^{-1}(0))$ N_i multiplicity of E_i in divisor of $f \circ \pi$ $\nu_i - 1$ multiplicity of E_i in divisor of $\pi^*(dx_1 \wedge \cdots \wedge dx_n)$

Currently available:

- intersection form of exceptional curves on desingularized surface
- dual graph of resolution (surface case)
- discrepancies $a_i = \nu_i N_i$
- topological zeta function (global and local)

$$Z_{top,f}(s) = \sum_{I} \chi(E_{I}^{\circ}) \prod_{i \in I} \frac{1}{N_{i}s + \nu_{i}}$$

Algorithmic Desingularization

A. Frühbis-Krüger

ntroduction

Desingularization Blowing Up Finding Centers