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Introduction by Pictures: Singularities

y2 − x = 0 y2 − x2 − x3 = 0

x2 + y4 − z4 − 3x2y2 = 0 x3 + y3 − z3 − 11xyz = 0
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Introduction by Pictures: Desingularization

Resolution of V (y2 + x4 − x5) ⊂ A2

−→

−→
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Resolution of Singularities

K field of characteristic zero
for this talk C

W smooth, puredimensional scheme of dimension n
X ⊂ W reduced subscheme

Simplest Formulation(non-embedded):
Find a non-singular X̃ and a proper birational morphism

π : X̃ −→ X

such that Reg(X ) ∼= π−1(Reg(X )).
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Blowing up - in Pictures

Idea: Replace a point in the plane
by a projective line

effect: more room for curves to become smooth

in pictures (just 1 chart):

−→
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Embedded Desingularization

Technical Formulation:

Find a finite sequence of blowing-ups

Wr
πr−→ · · · π2−→ W1

π1−→ W0 = W

at smooth centers Ci ⊂ Wi such that

1. exceptional divisors Ek of πk ◦ · · · ◦ π1 have normal
crossings

2. Ck have ’normal crossings’ with it

3. Ck ∩ Reg(X ) = ∅
4. strict transform Xr of X under πr ◦ · · · ◦ π1 is

non-singular and has normal crossings with Er

5. (Wr ,Xr ) −→ (W ,X ) is equivariant under group action
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Introduction

Desingularization

Blowing Up

Finding Centers

Applications

Embedded Desingularization

Technical Formulation:

Find a finite sequence of blowing-ups

Wr
πr−→ · · · π2−→ W1

π1−→ W0 = W

at smooth centers Ci ⊂ Wi such that

1. exceptional divisors Ek of πk ◦ · · · ◦ π1 have normal
crossings

2. Ck have ’normal crossings’ with it

3. Ck ∩ Reg(X ) = ∅
4. strict transform Xr of X under πr ◦ · · · ◦ π1 is

non-singular and has normal crossings with Er

5. (Wr ,Xr ) −→ (W ,X ) is equivariant under group action



Algorithmic
Desingularization

A. Frühbis-Krüger
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History of the problem

I Curves: L.Kronecker, M.Noether, A.Brill, . . . (1890s)

I Surfaces, local: H.W.Jung (1908)

I Surfaces, global: R.J.Walker (1935)

approaches of more algebraic flavor:

I surfaces/3-folds: O.Zariski (1930s/40s)

I general case: H.Hironaka (1964) for charK = 0

recent developments:

I algorithmic proofs: Bierstone+Milman; Villamayor;
Encinas+Hauser (since 1990s)

I implementations: Bodnar+Schicho; FK+Pfister
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Main Algorithmic Tasks

For each blowing up step:

A Blowing up of Wi along a given center Ci

I Groebner basis compuation in at least
(n + codim(Ci ) + 1) variables

I iterated ideal quotients (=again Groebner bases)
I algorithmically straight forward, not overly expensive

B Finding suitable centers Ci

key difficulty: not all permissible centers improve the
situation
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Introduction

Desingularization

Blowing Up

Finding Centers

Applications

Computing a blowing up

X affine variety, its ideal IX ⊂ K [x1, . . . , xn]
C smooth subvariety of X

(wlog IC = 〈f1, . . . , fk〉)

total transform X
′
total ⊂ X × Pk−1:

can be computed as preimage of IX under

Φ : K [x1, . . . , xn, y1, . . . , yk ] −→ K [x1, . . . , xn, t]

xi 7−→ xi

yj 7−→ t · fj
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Introduction

Desingularization

Blowing Up

Finding Centers

Applications

Some Good and Bad Choices of Centers I

C=0−→

Ux : Xstrict = V (z2 + xy2), X = V (z2 + xy2)

E = V (x)

smooth
C=line−→
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Some Good and Bad Choices of Centers II

X = V (z2 − x2y2) ⊂ A3

Choices of Center:

I Sing(X) singular =⇒ impossible

I V (z , x) is random choice of component =⇒ not suitable

I 0 is only possible choice
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General Philosophy for Finding the Center

’worst’ points are points of maximal value of a governing
invariant =⇒ upcoming center

Conditions for a suitable governing invariant:

I maximal locus is closed set (Zariski upper
semicontinuous)

I maximal locus is non-singular and has normal crossing
with exceptional divisors

I maximal value does not increase under blowing ups

I decrease of maximal value measures progress of
desingularization
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General Structure of Invariant

(invn; invn−1; . . . ; inv2)

key point of Hironaka’s inductive argument:
descent in dimension of the ambient space ’;’

general structure of invariant in each dimension

invi = (ordw (Ii ), nE (i))

where

I nE (i) counts certain exceptional divisors which meet the
point w

I ordw (Ii ) is the order of an appropriate ideal in the local
ring at w
(the coefficient ideal in ambient dimension i)

I depending on algorithmic approach invn can also have
the Hilbert-Samuel function at w as first entry
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Variants in Singular
Variants of embedded desingularization:

I variant of Villamayor’s Algorithm (available):
+ all dimensions
+ no special conditions on ideal
- large amount of data
- a number of unproductive blowing ups

I Bierstone-Milman Algorithm (not available):
- stratification by Hilbert-Samuel function slow
- even more data due to further splitting up of charts

I Blanco’s variant for binomial ideals (implemented, not
yet in distribution):
+ computation of center by combinatorial process
+ faster, total amount of data smaller

I Jung’s algorithm for surfaces (implementation
FK-Renner):
- only for surfaces
+ faster, fewer charts
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Introduction

Desingularization

Blowing Up

Finding Centers

Applications

Variants in Singular
Variants of embedded desingularization:

I variant of Villamayor’s Algorithm (available):
+ all dimensions
+ no special conditions on ideal
- large amount of data
- a number of unproductive blowing ups

I Bierstone-Milman Algorithm (not available):
- stratification by Hilbert-Samuel function slow
- even more data due to further splitting up of charts

I Blanco’s variant for binomial ideals (implemented, not
yet in distribution):
+ computation of center by combinatorial process
+ faster, total amount of data smaller

I Jung’s algorithm for surfaces (implementation
FK-Renner):
- only for surfaces
+ faster, fewer charts



Algorithmic
Desingularization

A. Frühbis-Krüger
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Problems/Tasks

result of resolution process represented in charts

=⇒ need to extract desired information

I Huge amount of final charts, even larger amount of
intermediate charts

I Passing through the tree of charts

I Identification of subvarieties in different charts

I Identification of exceptional divisors in different charts

I Separation of C-irreducible components of exceptional
divisors
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Applications of desingularization

Given π : W −→ Cn embedded resolution of V = f −1(0),
Ei irreducible components of π−1(f −1(0))
Ni multiplicity of Ei in divisor of f ◦ π
νi − 1 multiplicity of Ei in divisor of π∗(dx1 ∧ · · · ∧ dxn)

Currently available:

I intersection form of exceptional curves on desingularized
surface

I dual graph of resolution (surface case)

I discrepancies ai = νi − Ni

I topological zeta function (global and local)

Ztop,f (s) =
∑

I

χ(E ◦
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Ni s + νi
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