The moduli space of points on the projective line and quadratic Gröbner bases.

Milena Hering and Benjamin Howard

Harmony of Gröbner Bases and the Modern Industrial Society, Osaka, July 2, 2010

Let

$$
M_{n}=\left(\mathbb{P}^{1}\right)^{n} / / \operatorname{Aut}\left(\mathbb{P}^{1}\right)
$$

There is a natural embedding

$$
M_{n} \hookrightarrow \mathbb{P}^{N}
$$

with homogeneous coordinate ring

$$
A \cong \mathbb{C}\left[x_{0}, \ldots, x_{N}\right] / l
$$

A is the ring of invariants.

Example

- $M_{4} \cong \mathbb{P}^{1}$
- M_{5} del Pezzo surface.
- M_{6} is the Segre cubic and the ring of invariants is

$$
A=\mathbb{C}\left[X_{0}, \ldots, X_{5}\right] /\left(X_{0}+\cdots+X_{5}, X_{0}^{3}+\cdots+X_{5}^{3}\right)
$$

Gel'fand MacPherson correspondence (geometric version):

$$
\begin{gathered}
M_{2 \times n}=\left\{\left[\begin{array}{lll}
x_{1} & \ldots & x_{n} \\
y_{1} & \ldots & y_{n}
\end{array}\right]\right\} \\
G(2, n) \cong M_{2 \times n} / / S L(2, \mathbb{C})
\end{gathered}
$$

$$
G(2, n) / / T \cong M_{n} \cong \mathbb{P}^{1} / / \mathrm{SL}(2, \mathbb{C})
$$

- $G(2, n)$ is the Grassmannian of 2-planes in \mathbb{C}^{n}
- T is the torus

$$
T=\left\{\left[\begin{array}{ccc}
t_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & t_{n}
\end{array}\right]: t_{1} \cdots t_{n}=1\right\}
$$

Gel'fand MacPherson correspondence (algebraic version):

$$
\begin{gathered}
\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right] \\
\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{\mathrm{SL}(2, \mathbb{C})} \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{T} \\
A \cong \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{\mathrm{SL}(2, \mathbb{C}) \times T}
\end{gathered}
$$

- $\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{T}=$ polynomials that are multihomogeneous in x_{i} and y_{i}.
- $\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{\operatorname{SL}(2, \mathbb{C})}$ is the homogeneous coordinate ring of $G(2, n)$ in the Plücker embedding.

Definition

Let

$$
\begin{array}{|l}
\hline i \\
\hline j
\end{array}=\operatorname{det}\left[\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right]=x_{i} y_{j}-x_{j} y_{i} .
$$

Theorem (First Fundamental Theorem of Invariant Theory)

The invariants | i | |
| :--- | :--- |
| j | generate the invariant ring |

$$
\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{\mathrm{SL}(2, \mathbb{C})}
$$

These invariants satisfy the Plücker relations:

Definition

A Young tableau

i_{1}	\cdots	i_{r}
j_{1}	\cdots	j_{r}

is called semistandard if

- $i_{t}<j_{t}$ for all $1 \leqslant t \leqslant r$
- $i_{1} \leqslant \cdots \leqslant i_{r}$
- $j_{1} \leqslant \cdots \leqslant j_{r}$.

Theorem

The monomials corresponding to the $2 \times r$ semistandard Young tableaux form a basis for the degree r part of the Plücker ring

$$
\left(\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{\mathrm{SL}(2, \mathbb{C})}\right)_{r}
$$

Recall the Gel'fand MacPherson correspondence (algebraic version):

$$
\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]
$$

$$
\begin{gathered}
\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{\operatorname{LL}(2, \mathbb{C})} \quad \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{T} \\
A \cong \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]^{\operatorname{SL}(2, \mathbb{C}) \times T}
\end{gathered}
$$

Definition

Let $\tau=$| i_{1} | \cdots | i_{r} |
| :--- | :--- | :--- |
| j_{1} | \cdots | j_{r} | be a Young tableau, where $1 \leqslant i_{\ell}, j_{\ell} \leqslant n$.

Let

$$
\mu_{\ell}=\left|\left\{k \mid i_{k}=\ell\right\} \cup\left\{k \mid j_{k}=\ell\right\}\right| .
$$

The filling of τ is defined to be $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$.

Example

If $\tau=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 3 | 3 | 4 | , the filling is $\mu=(1,1,3,1)$.

Let

$$
t \in T=\left\{\left[\begin{array}{ccc}
t_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & t_{n}
\end{array}\right]: t_{1} \cdots t_{n}=1\right\} .
$$

Then $t \cdot$\begin{tabular}{|c}
$\frac{i}{j}$

\hline

$=t_{i} x_{i} t_{j} y_{j}-t_{j} x_{j} t_{i} y_{i}=t_{i} t_{j}$

$\frac{i}{j}$

\hline
\end{tabular} .

Let $\tau=$| i_{1} | \cdots | i_{r} |
| :--- | :--- | :--- |
| j_{1} | \cdots | j_{r} |
| μ_{r} | | | be a semistandard Young tableau with filling $\left(\mu_{1}, \ldots, \mu_{n}\right)$.

Then

$$
t \cdot \tau=t_{i_{1}} t_{j_{1}} \cdots t_{i_{r}} t_{j_{r}} \begin{array}{|c|l|l|}
\hline i_{1} & \cdots & i_{r} \\
\hline j_{1} & \cdots & j_{r} \\
\hline
\end{array}=t_{1}^{\mu_{1}} \cdots t_{n}^{\mu_{n}} \tau
$$

is invariant under the torus action if and only if $\left(\mu_{1}, \ldots, \mu_{n}\right)=(d, \ldots, d)$.

Theorem (Kempe, 1894)

The ring of invariants A is generated by the lowest degree invariants.

- When n is even, the SSYT of shape $2 \times \frac{n}{2}$ with filling $(1, \ldots, 1)$ generate A.
- When n is odd, the SSYT of shape $2 \times n$ with filling $(2, \ldots, 2)$ generate A.

Example

- $n=4$:

| 1 | 2 | , | 1 |
| :--- | :--- | :--- | :--- | 3^{3}.

- $n=5$:

1	1	2	2	3						
3	4	4	5	5	,	1	1	2	4	4
:---	:---	:---	:---	:---						
2	3	3	5	5	.					

Fix n even (odd). Let $\mathbb{C}\left[X_{\tau}\right]$ be the polynomial ring in the variables X_{τ}, where τ runs over all SSYT of shape $2 \times \frac{n}{2}(2 \times n)$ and filling $(1, \ldots, 1)$ $((2, \ldots, 2)$. Then by Kempe's theorem, we have

$$
I \hookrightarrow \mathbb{C}\left[X_{\tau}\right] \rightarrow A
$$

where I is the ideal of relations between the generators of the ring of invariants.

Theorem (Howard, Millson, Snowden, Vakil, 2009)

When $n \neq 6$, then I is generated by equations of degree 2.

Does / admit a quadratic Gröbner basis?

Example

When $n=8, A$ is not Koszul. In particular there exists no term order \prec such that $\mathrm{in}_{\prec} l$ is generated by quadratic monomials.

Theorem (Eisenbud, Reeves, Totaro)

Let

$$
R=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right] / J,
$$

where J is a homogeneous ideal in R. Then for d large enough, the d 'th Veronese subring

$$
R^{(d)}=\bigoplus_{m} R_{m d} \cong \mathbb{C}\left[x_{1}, \ldots, x_{M}\right] / J_{d}
$$

where J_{d} has a quadratic Gröbner basis.

Theorem (-, Howard)

- If n is even and k is even, then I_{k} has a quadratic Gröbner basis. In particular, I_{2} has a quadratic Gröbner basis.
- If n is odd, then I admits a quadratic Gröbner basis.

In both cases the initial ideal is square free.

Idea of Proof:
We assume n is odd.
Step 1: Degenerate the moduli space to a toric variety

Let $\tau=$| i_{1} | \cdots | i_{n} |
| :--- | :--- | :--- |
| j_{1} | \cdots | j_{n} | be a SSYT of shape $2 \times n$ with filling $(2, \ldots, 2)$, and let

$$
w_{\tau}\left(\begin{array}{|l|l|l}
\hline i_{1} & \cdots & i_{n} \\
\hline j_{1} & \cdots & j_{n} \\
\hline
\end{array}\right)=\sum_{k=1}^{r} i_{k}+2 j_{k} .
$$

Then $w=\left(w_{\tau}\right)$ is a weight vector on the polynomial ring $\mathbb{C}\left[X_{\tau}\right]$.

Theorem

The initial ideal in_{w} I is a binomial ideal. The corresponding variety is a normal toric variety.
(Sturmfels, Guinculea-Lakshmibai, Sturmfels-Speyer, Caldararu, Alexeeev-Brion, Foth-Hu, Howard-Millson-Snowden-Vakil). So w lies in a face of the Gröbner fan, and is contained in $\operatorname{Trop}\left(M_{n}\right)$.

Theorem

The initial ideal in_{w} I is a binomial ideal. The corresponding variety is a toric variety.
(Hence there exists a flat family whose general fiber is isomorphic to M_{n} and whose special fiber is isomorphic to a toric variety, ref. Mutsihiro Miyazaki's talk).
The corresponding polytope is given by

$$
\begin{aligned}
P=\left\{\left(a_{1}, \ldots, a_{n-3}\right) \in \mathbb{R}^{n-3} \mid\right. & 2 \geqslant a_{1}, a_{n-3} \geqslant 0 \\
& \left.a_{i}+a_{i+1} \geqslant 1, a_{i}+1 \geqslant a_{i+1}, a_{i+1}+1 \geqslant a_{i}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& P=\left\{\left(a_{1}, \ldots, a_{n-3}\right) \in \mathbb{R}^{n-3} \mid 2 \geqslant a_{1}, a_{n-3} \geqslant 0,\right. \\
& \left.\quad a_{i}+a_{i+1} \geqslant 1, a_{i}+1 \geqslant a_{i+1}, a_{i+1}+1 \geqslant a_{i}\right\}
\end{aligned}
$$

Example

The polytope for $n=5$:
The polytope for $n=6$
$2 \geqslant a_{1}, a_{2}, \geqslant 0, a_{1}+a_{2} \geqslant 1$, $a_{1}+1 \geqslant a_{2}, a_{2}+1 \geqslant a_{1}$.

Step 2: We have

$$
\mathbb{C}\left[X_{\tau}\right] / \operatorname{in}_{w}(I) \cong \mathbb{C}\left[X_{u}\right] / I_{P}
$$

where I_{P} is the toric ideal associated to the lattice polytpe P.
(The lattice points $u \in P \cap \mathbb{Z}^{n-3}$ are in one-to-one correspondence with the SSYT of shape $2 \times n$ with filling $(2, \ldots, 2)$.)
We define a term order \prec on $\mathbb{C}\left[X_{u}\right]$.

- order the variables X_{u} for $u \in P \cap \mathbb{Z}^{d}$ using standard lexicographic ordering \mathbb{Z}^{d}
- Let $\prec_{\text {dlex }}$ be the degree lexicographic order on $k\left[X_{u}\right]_{u \in P \cap \mathbb{Z}^{d}}$ induced by ordering of X_{u}.
- For a monomial $m=\prod_{i=1}^{r} X_{u_{i}}$, we define $N(m)=\sum_{i=1}^{r}\left\|u_{i}\right\|^{2}$.

We define $m_{1} \prec m_{2}$ if

- $\operatorname{deg}\left(m_{1}\right)<\operatorname{deg}\left(m_{2}\right)$, or
- $\operatorname{deg}\left(m_{1}\right)=\operatorname{deg}\left(m_{2}\right)$ and $N\left(m_{1}\right)<N\left(m_{2}\right)$, or
- $\operatorname{deg}\left(m_{1}\right)=\operatorname{deg}\left(m_{2}\right), N\left(m_{1}\right)=N\left(m_{2}\right)$, and $m_{1} \prec_{\text {dlex }} m_{2}$.

Theorem

The initial ideal $\mathrm{in}_{\prec} I_{P}$ is generated by squarefree quadratic monomials.
We get a term order \prec_{w} on $\mathbb{C}\left[X_{\tau}\right]$, by letting $m_{1} \prec_{w} m_{2}$ if

- $w\left(m_{1}\right)<w\left(m_{2}\right)$, or
- $w\left(m_{1}\right)=w\left(m_{2}\right)$ and $m_{1} \prec m_{2}$.

Then

$$
\operatorname{in}_{\prec_{w}} I=\operatorname{in}_{\prec}\left(\operatorname{in}_{w} I\right)=\operatorname{in}_{\prec}\left(I_{P}\right)
$$

is generated by squarefree quadratic monomials.

