The moduli space of points on the projective line and quadratic Gröbner bases.

Milena Hering and Benjamin Howard

Harmony of Gröbner Bases and the Modern Industrial Society, Osaka, July 2 , 2010

Algebraic description The Plücker ring A set of generators for the ring of invariants

Let

$$M_n = (\mathbb{P}^1)^n // \operatorname{Aut}(\mathbb{P}^1).$$

There is a natural embedding

$$M_n \hookrightarrow \mathbb{P}^N$$
,

with homogeneous coordinate ring

$$A \cong \mathbb{C}[x_0,\ldots,x_N]/I.$$

A is the ring of invariants.

Example

- $M_4 \cong \mathbb{P}^1$
- M₅ del Pezzo surface.
- M_6 is the Segre cubic and the ring of invariants is

$$A = \mathbb{C}[X_0, \dots, X_5]/(X_0 + \dots + X_5, X_0^3 + \dots + X_5^3).$$

Gel'fand MacPherson correspondence (geometric version):

$$M_{2\times n} = \left\{ \begin{bmatrix} x_1 & \dots & x_n \\ y_1 & \dots & y_n \end{bmatrix} \right\}$$

 $G(2,n) \cong M_{2 \times n} / / \operatorname{SL}(2,\mathbb{C}) \qquad \qquad M_{2 \times n} / / T \cong (\mathbb{P}^1)^n$

$$G(2,n)//T \cong M_n \cong \mathbb{P}^1//\operatorname{SL}(2,\mathbb{C})$$

- G(2, n) is the Grassmannian of 2-planes in \mathbb{C}^n
- T is the torus

$$T = \left\{ \begin{bmatrix} t_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & t_n \end{bmatrix} : t_1 \cdots t_n = 1 \right\}.$$

Gel'fand MacPherson correspondence (algebraic version):

$$\mathbb{C}[x_1, y_1, \dots, x_n, y_n]$$
$$\mathbb{C}[x_1, y_1, \dots, x_n, y_n]^{\mathsf{SL}(2,\mathbb{C})} \qquad \mathbb{C}[x_1, y_1, \dots, x_n, y_n]^T$$

$$A \cong \mathbb{C}[x_1, y_1, \ldots, x_n, y_n]^{\mathsf{SL}(2,\mathbb{C}) \times \mathsf{T}}$$

- $\mathbb{C}[x_1, y_1, \dots, x_n, y_n]^T$ = polynomials that are multihomogeneous in x_i and y_i .
- C[x₁, y₁,..., x_n, y_n]^{SL(2,C)} is the homogeneous coordinate ring of G(2, n) in the Plücker embedding.

Algebraic description **The Plücker ring** A set of generators for the ring of invariants

Definition

Let

$$\frac{i}{j} = \det \begin{bmatrix} x_i & x_j \\ y_i & y_j \end{bmatrix} = x_i y_j - x_j y_i.$$

Theorem (First Fundamental Theorem of Invariant Theory) The invariants $\begin{bmatrix} i \\ j \end{bmatrix}$ generate the invariant ring $\mathbb{C}[x_1, y_1, \dots, x_n, y_n]^{SL(2,\mathbb{C})}.$

These invariants satisfy the Plücker relations:

Definition

A Young tableau

is called semistandard if

•
$$i_t < j_t$$
 for all $1 \leqslant t \leqslant r$

•
$$i_1 \leqslant \cdots \leqslant i_r$$

•
$$j_1 \leqslant \cdots \leqslant j_r$$
.

Theorem

The monomials corresponding to the $2 \times r$ semistandard Young tableaux form a basis for the degree r part of the Plücker ring

$$\left(\mathbb{C}[x_1, y_1, \dots, x_n, y_n]^{\mathsf{SL}(2,\mathbb{C})}\right)_r$$

Recall the Gel'fand MacPherson correspondence (algebraic version):

$$\mathbb{C}[x_1, y_1, \ldots, x_n, y_n]$$

$$\mathbb{C}[x_1, y_1, \dots, x_n, y_n]^{\mathsf{SL}(2,\mathbb{C})} \qquad \mathbb{C}[x_1, y_1, \dots, x_n, y_n]^{\mathsf{T}}$$

$$A \cong \mathbb{C}[x_1, y_1, \ldots, x_n, y_n]^{\mathsf{SL}(2,\mathbb{C}) \times \mathsf{T}}$$

The ring of invariants of ordered points on the projective line	Algebraic description The Plücker ring A set of generators for the ring of invariants		
The ideal of relations for the ring of invariants			

Definition

Let
$$\tau = \underbrace{\begin{matrix} i_1 & \cdots & i_r \\ j_1 & \cdots & j_r \end{matrix}}_{\mu_{\ell}}$$
 be a Young tableau, where $1 \leq i_{\ell}, j_{\ell} \leq n$.
Let
 $\mu_{\ell} = |\{k \mid i_k = \ell\} \cup \{k \mid j_k = \ell\}|.$

The *filling* of τ is defined to be $\mu = (\mu_1, \ldots, \mu_n)$.

Example

If
$$\tau = \boxed{\begin{array}{c|c} 1 & 2 & 3 \\ \hline 3 & 3 & 4 \end{array}}$$
, the filling is $\mu = (1, 1, 3, 1)$.

Algebraic description The Plücker ring A set of generators for the ring of invariants

Let

$$t \in T = \left\{ \begin{bmatrix} t_1 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & t_n \end{bmatrix} : t_1 \cdots t_n = 1 \right\}.$$
Then $t \cdot \boxed{j} = t_i x_i t_j y_j - t_j x_j t_i y_i = t_i t_j \boxed{j}.$
Let $\tau = \underbrace{i_1 & \cdots & i_r}{j_1 & \cdots & j_r}$ be a semistandard Young tableau with filling
 $(\mu_1, \dots, \mu_n).$
Then
 $t \cdot \tau = t_{i_1} t_{j_1} \cdots t_{i_r} t_{j_r} \boxed{j_1 & \cdots & j_r} = t_1^{\mu_1} \cdots t_n^{\mu_n} \tau$

is invariant under the torus action if and only if $(\mu_1, \ldots, \mu_n) = (d, \ldots, d)$.

Algebraic description The Plücker ring A set of generators for the ring of invariants

Theorem (Kempe, 1894)

The ring of invariants A is generated by the lowest degree invariants.

- When n is even, the SSYT of shape $2 \times \frac{n}{2}$ with filling (1, ..., 1) generate A.
- When n is odd, the SSYT of shape 2 × n with filling (2,...,2) generate A.

Example

• *n* = 4:

• *n* = 5:

1	1	2	2	3		1	1	2	4	4
3	4	4	5	5	,	2	3	3	5	5

Fix *n* even (odd). Let $\mathbb{C}[X_{\tau}]$ be the polynomial ring in the variables X_{τ} , where τ runs over all SSYT of shape $2 \times \frac{n}{2}$ $(2 \times n)$ and filling $(1, \ldots, 1)$ $((2, \ldots, 2)$. Then by Kempe's theorem, we have

 $I \hookrightarrow \mathbb{C}[X_{\tau}] \twoheadrightarrow A,$

where I is the ideal of relations between the generators of the ring of invariants.

Theorem (Howard, Millson, Snowden, Vakil, 2009)

When $n \neq 6$, then I is generated by equations of degree 2.

Does I admit a quadratic Gröbner basis?

Example

When n = 8, A is not Koszul. In particular there exists no term order \prec such that in $_{\prec} I$ is generated by quadratic monomials.

Theorem (Eisenbud, Reeves, Totaro)

Let

$$R = \mathbb{C}[x_1, \ldots, x_N]/J,$$

where J is a homogeneous ideal in R. Then for d large enough, the d'th Veronese subring

$$R^{(d)} = \bigoplus_m R_{md} \cong \mathbb{C}[x_1, \dots, x_M]/J_d$$

where J_d has a quadratic Gröbner basis.

Theorem (-, Howard)

- If n is even and k is even, then I_k has a quadratic Gröbner basis. In particular, I₂ has a quadratic Gröbner basis.
- If n is odd, then I admits a quadratic Gröbner basis.

In both cases the initial ideal is square free.

Idea of Proof:

We assume *n* is odd.

Step 1: Degenerate the moduli space to a toric variety

Let
$$\tau = \underbrace{\begin{array}{c|c} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{array}}_{k \in \mathbb{Z}}$$
 be a SSYT of shape $2 \times n$ with filling $(2, \dots, 2)$, and let
$$w_{\tau} \left(\underbrace{\begin{array}{c|c} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{array}}_{k \in \mathbb{Z}} \right) = \sum_{k=1}^r i_k + 2j_k.$$

Then $w = (w_{\tau})$ is a weight vector on the polynomial ring $\mathbb{C}[X_{\tau}]$.

Theorem

The initial ideal $in_w I$ is a binomial ideal. The corresponding variety is a normal toric variety.

(Sturmfels, Guinculea-Lakshmibai, Sturmfels-Speyer, Caldararu, Alexeeev-Brion, Foth-Hu, Howard-Millson-Snowden-Vakil). So w lies in a face of the Gröbner fan, and is contained in $\text{Trop}(M_n)$.

r the ideal of relations ibner bases.
ibr

Theorem

The initial ideal $in_w I$ is a binomial ideal. The corresponding variety is a toric variety.

(Hence there exists a *flat family* whose general fiber is isomorphic to M_n and whose special fiber is isomorphic to a toric variety, ref. Mutsihiro Miyazaki's talk).

The corresponding polytope is given by

$$P = \{(a_1, \dots, a_{n-3}) \in \mathbb{R}^{n-3} \mid 2 \ge a_1, a_{n-3} \ge 0, \\ a_i + a_{i+1} \ge 1, a_i + 1 \ge a_{i+1}, a_{i+1} + 1 \ge a_i\}$$

$$P = \{(a_1, \dots, a_{n-3}) \in \mathbb{R}^{n-3} \mid 2 \ge a_1, a_{n-3} \ge 0, \\ a_i + a_{i+1} \ge 1, a_i + 1 \ge a_{i+1}, a_{i+1} + 1 \ge a_i\}$$

Example

Step 2: We have

$$\mathbb{C}[X_{\tau}]/\operatorname{in}_{w}(I)\cong\mathbb{C}[X_{u}]/I_{P},$$

where I_P is the toric ideal associated to the lattice polytpe P. (The lattice points $u \in P \cap \mathbb{Z}^{n-3}$ are in one-to-one correspondence with the SSYT of shape $2 \times n$ with filling $(2, \ldots, 2)$.) We define a term order \prec on $\mathbb{C}[X_u]$.

- order the variables X_u for $u \in P \cap \mathbb{Z}^d$ using standard lexicographic ordering \mathbb{Z}^d
- Let \prec_{dlex} be the degree lexicographic order on $k[X_u]_{u \in P \cap \mathbb{Z}^d}$ induced by ordering of X_u .

• For a monomial $m = \prod_{i=1}^r X_{u_i}$, we define $N(m) = \sum_{i=1}^r ||u_i||^2$.

We define $m_1 \prec m_2$ if

- $\deg(m_1) < \deg(m_2)$, or
- $\deg(m_1) = \deg(m_2)$ and $N(m_1) < N(m_2)$, or
- deg (m_1) = deg (m_2) , $N(m_1) = N(m_2)$, and $m_1 \prec_{dlex} m_2$.

The ring of invariants of ordered points on the projective line The ideal of relations for the ring of invariants	Generators for the ideal of relations Quadratic Gröbner bases. Idea of Proof
--	--

Theorem

The initial ideal in $\downarrow I_P$ is generated by squarefree quadratic monomials.

We get a term order \prec_w on $\mathbb{C}[X_{\tau}]$, by letting $m_1 \prec_w m_2$ if

•
$$w(m_1) < w(m_2)$$
, or
• $w(m_1) = w(m_2)$ and $m_1 \prec m_2$.
hen

$$\operatorname{in}_{\prec_w} I = \operatorname{in}_{\prec}(\operatorname{in}_w I) = \operatorname{in}_{\prec}(I_P)$$

is generated by squarefree quadratic monomials.