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(Non)-Linear Integer Programming
The problem is:

with data:
min/max { f(x)   :   Ax = b,   l ≤ x ≤ u,   x in Zn }

l,u: lower and upper bounds in Zn f: function from Zn to R

A: integer m x n matrix   b: right-hand side in Zm

It has generic modeling power and numerous applications
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(Non)-Linear Integer Programming
The problem is:

l,u: lower and upper bounds in Zn

with data:

f: function from Zn to R

A: integer m x n matrix   b: right-hand side in Zm

min/max { f(x)   :   Ax = b,   l ≤ x ≤ u,   x in Zn }

Generic Example: Multiway Tables

Consider (Non)-linear minimization over
l X m X n tables with given line sums:
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min {f(x) : Σi xi,j,k=aj,k , Σj xi,j,k=bi,k , Σk xi,j,k= ci,j , x ≥ 0,  x in Zl X m X n }

It is the integer programming problem:
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(Non)-Linear Integer Programming
The problem is:

with data:

Unfortunately, even with  f(x)=wx linear, it is typically NP-hard

We develop new theory enabling polytime solution of broad, natural, 
universal (non)-linear integer programs in variable dimension  

In fixed dimension it is polytime solvable, but often quite limited

min/max { f(x)   :   Ax = b,   l ≤ x ≤ u,   x in Zn }

l,u: lower and upper bounds in Zn f: function from Zn to R

A: integer m x n matrix   b: right-hand side in Zm

It has generic modeling power and numerous applications



Graver Bases
and

Nonlinear Integer Programming
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circuits: ±(2 -1 0),   ±(1 0 -1),   ±(0 1 -2)

Example: Consider A=(1 2 1).   Then G(A) consists of

non-circuits: ±(1 -1 1) 

Graver Bases

Connection to Grobner bases:

UGB(A) := { xv+- xv- : v in G(A) }

forms a universal Grobner basis for the binomial (toric) ideal of A.

the set of binomials corresponding to G(A),

Example:  for A=(1 2 1) it is UGB(A) = {x1
2-x2, x1-x3, x2-x3

2, x1x3-x2}

(x is conformal to y if in same orthant and |xi| ≤ |yi| for all i)

The Graver basis of an integer matrix A is the finite set G(A) of 
conformal-minimal nonzero integer vectors x satisfying Ax = 0. 



Reference: N-fold integer programming (De Loera, Hemmecke, Onn, Weismantel)
Discrete Optimization (Volume in memory of George Dantzig), 2008 
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max { wx :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Theorem 1Theorem 1:: linear optimization in polytime with G(A):

Six Theorems on
(Non)-Linear Integer Programming
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max {f(Wx) :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Reference: Convex integer maximization via Graver bases (De Loera, Hemmecke, 
Onn, Rothblum, Weismantel) Journal of Pure and Applied Algebra, 2009

Theorem 2Theorem 2:: weighted convex maximization in polytime with G(A):

where W is is dd x x nn matrix and matrix and f convex function on convex function on ZZdd

(balancing d linear criteria or player utilities Wix)

Six Theorems on
(Non)-Linear Integer Programming
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min {Σfi(xi)  :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Reference: A polynomial oracle-time algorithm for convex integer minimization 
(Hemmecke, Onn, Weismantel) Mathematical Programming, to appear

Theorem 3Theorem 3:: separable convex minimization in polytime with G(A):

Six Theorems on
(Non)-Linear Integer Programming
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min {|x - x|p :  Ax = b,   l ≤ x ≤ u,   x in Zn}

Theorem 4Theorem 4:: integer point lp-nearest to x in polytime with G(A):

Reference: A polynomial oracle-time algorithm for convex integer minimization 
(Hemmecke, Onn, Weismantel) Mathematical Programming, to appear

Six Theorems on
(Non)-Linear Integer Programming
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Reference: The quadratic Graver cone, quadratic integer minimization & extensions
(Lee, Onn, Romanchuk, Weismantel), submitted

min {xTVx :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Six Theorems on
(Non)-Linear Integer Programming

Theorem 5Theorem 5:: quadratic minimization in polytime with G(A):

where V lies in cone K2(A) of possibly indefinite matrices, enabling 
minimization of some convex and some non-convex quadratics.
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min {p(x)  :  Ax = b,   l ≤ x ≤ u,   x in Zn }

Theorem 6Theorem 6:: polynomial minimization in polytime with G(A):

Reference: The quadratic Graver cone, quadratic integer minimization & extensions
(Lee, Onn, Romanchuk, Weismantel), submitted

where p is possibly indefinite polynomial of degree d in cone Kd(A),
enabling minimization of some (non)-convex degree d polynomials.

Six Theorems on
(Non)-Linear Integer Programming



Some Proofs
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Proof of Theorem 3
(separable convex minimization)

Lemma 1: Any separable convex function f on Rn is supermodular, that is, 
for any vectors gi in the same orthant and any vector x, it satisfies 

f(x+Σ gi) – f(x) ≥ Σ (f(x+ gi) – f(x))

Lemma 2: For separable convex f, point x, bounds l,u and direction g in Rn, 
the following univariate integer program can be solved in polytime:

min { f(x + αg)   :    l ≤ x + αg ≤ u,    α nonnegative integer } 



Rn

Shmuel Onn

Proof of Theorem 3
(separable convex minimization)

1. Find initial point by auxiliary program

R

f

2. Apply Lemma 2 repeatedly to greedily augment 
initial point to optimal one using directions g in G(A) 

f

Using the supermodularity of f from Lemma 1 and
integer Caratheodory theorem get polynomial time convergence

Solve min{Σ fi(xi) : Ax = b,  l ≤ x ≤ u,  x in Zn } 

Proof of Theorem 1: linear function wx=Σwixi : special case of Theorem 3

using the Graver basis G(A), as follows:



Lemma: Linear optimization over S in Zn can be used to solve in polytime

max { f(Wx)  :  x in S }

provided we are given a set E of all edge-directions of conv (S) 
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Proof of Theorem 2
(weighted convex maximization)

set E of all 
edge-directions

of conv(S)



Lemma: Linear optimization over S in Zn can be used to solve in polytime

max { f(Wx)  :  x in S }
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Proof of Theorem 2
(weighted convex maximization)

Proof of Theorem 2:  
Given S := {x in Zn : Ax = b,  l ≤ x ≤ u} and the Graver basis G(A), do:

2. Use G(A) for linear-optimization over S via Theorem 1 

1. Use the Graver basis as set E:=G(A) of all edge-directions of conv(S) 

3. Apply Lemma for weighted convex maximization, repeatedly using 2.



N-Fold Integer Programming
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N-Fold Products

The n-fold product of an (r,s) x t bimatrix A
is the following (r+ns) x nt matrix:

A(n) =

n
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A(n) =

Lemma: For fixed A, can compute in polytime the Graver basis G(A(n)) of

The proof uses finiteness results of 
Aoki-Takemura, Santos-Sturmfels, Hosten-Sullivant

Graver Bases of N-Fold Products



(Non)-Linear N-Fold Integer Programming

max{wx : A(n)x = b,  l ≤ x ≤ u,  x in Znt} 

TheoremTheorem:: we can solve each of the following in polynomial time:
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min{Σ fi(xi) : A
(n)x = b,  l ≤ x ≤ u,  x in Znt} separable convex minimization:

linear optimization:

weighted convex maximization: max{f(Wx) : A(n)x = b,  l ≤ x ≤ u,  x in Znt}

A(n) =

n

References: Theory and applications of n-fold integer programming, 35 pages,
IMA Volume on Mixed Integer Nonlinear Programming, Springer, to appear



(Non)-Linear N-Fold Integer Programming

max{wx : A(n)x = b,  l ≤ x ≤ u,  x in Znt} 

TheoremTheorem:: we can solve each of the following in polynomial time:
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min{Σ fi(xi) : A
(n)x = b,  l ≤ x ≤ u,  x in Znt} separable convex minimization:

linear optimization:

weighted convex maximization: max{f(Wx) : A(n)x = b,  l ≤ x ≤ u,  x in Znt}

Proof: Use Lemma to construct in polytime the Graver base G(A(n)).    
Now apply and use Theorems 1 - 3 to optimize in polytime. 



(Non)-Linear N-Fold Integer Programming

max{wx : A(n)x = b,  l ≤ x ≤ u,  x in Znt} 

TheoremTheorem:: we can solve each of the following in polynomial time:
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min{Σ fi(xi) : A
(n)x = b,  l ≤ x ≤ u,  x in Znt} separable convex minimization:

linear optimization:

weighted convex maximization: max{f(Wx) : A(n)x = b,  l ≤ x ≤ u,  x in Znt}

min{f(W(n)x) : A(n)x = b,  l ≤ x ≤ u,  L ≤ W(n)x ≤ U,  x in Znt} 

With more work can also do weighted separable convex minimization:



Some Applications
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Complexity of deciding the existence of 
l X m X n tables with given line sums:

1. Multiway Tables

Three dimensional matching, Karp, 1972 

Consequence of linear n-fold IP, De Loera, Hemmecke, Onn, Weismantel, 2008

Integer programming in fixed dimension, Lenstra, 1982

- l,m fixed,  n variable:   Polytime

- l, m, n variable:   NP-complete

- l, m, n fixed: Polytime

- l fixed, m, n variable:   Universal for IP (even with l=3)
Part of my talk in previous Japan GB conference,  De Loera, Onn,  2006
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Much more generally, consider the  
multi-index transportation problem studied
by Motzkin in 1952, of minimization over 
m1 X . . . X mk X n tables with given margins:

1. Multiway Tables

A(n) =

n

It is an n-fold program 
min {f(x)   :   A(n)x = b,   x ≥ 0,   x integer }

for suitable A depending on m1, …, mk where: 
- A1 gives  equations of margins summing over layers
- A2 gives  equations of margins summing within a single layer at a time
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Much more generally, consider the  
multi-index transportation problem studied
by Motzkin in 1952, of minimization over 
m1 X . . . X mk X n tables with given margins:

1. Multiway Tables

Corollary 1: (Non)-linear optimization over m1 X . . . X mk X n tables 
with given margins can be done in polynomial time

In contrast: Universality of three-way tables (De Loera, Onn):
Every integer program is one over 3 X m X n tables with given line-sums
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Common strategy in web disclosure of sensitive data: 
disclose margins but not table entries.

The security of an entry is then related to the set of values
that it can take in all tables with the disclosed margins.

2. Privacy in Statistical Data Bases



Example: the values occurring in the shaded entry in
the tables with the given line-sums are precisely 0, 2
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2. Privacy in Statistical Data Bases

Universality of Table Entries (My talk in previous Japan GB Conference):
Every finite set of nonnegative integers is the set of values
in an entry of the 3 X m X n tables with some given line-sums



Proof: compute the true integer lower and upper bounds on the entry
by solving the following two n-fold programs in polytime:

L = min xi1 . . . ik+1 over all tables with the given margins

U = max xi1 . . . ik+1 over all tables with the given margins

Incorporate bounds L+1 ≤ xi1 . . . ik+1  ≤ U-1 and repeat.

Shmuel Onn

(note that the value is unique if and only if L = U)

Corollary 2: The set of values in any entry in all m1 X . . . X mk X n tables 
with any given margins can be computed in polytime

2. Privacy in Statistical Data Bases

In contrast, the theory of n-fold integer programming yields:
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suppliers

Km,n

consumers

s1

sm

c1

cn

cost:  Σijcij(Σk xijk ) aij capacities:  uij

It can be shown to be a (non)-linear n-fold integer program

min { f(W(n)x)  :  A(n)x =(si, cj),   x ≥ 0,   W(n)x ≤ u,   x in Zmnl }

Find integer l-commodity flow x from m suppliers to n consumers
under supply, consumption and capacity constraints, of minimum  
possibly convex cost f which accounts for channel congestion  

3. Multicommodity Flows

flow
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suppliers

Km,n

consumers

s1

sm

c1

cn

cost:  Σijcij(Σk xijk ) aij capacities:  uij

Corollary 3:Corollary 3: For any fixed l commodities and m suppliers, can find  
optimal multicommodity flow for n consumers in polytime

Find integer l-commodity flow x from m suppliers to n consumers
under supply, consumption and capacity constraints, of minimum  
possibly convex cost f which accounts for channel congestion  

3. Multicommodity Flows

flow
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min { wx + EE[c(x)]   :   x ≥ 0,   x in Zr }

c(x) = min { uy :  A1x + A2y = b,   y ≥ 0,   y in Zs }
where 

Corollary 4:Corollary 4: Stochastic IP with n scenarios can be solved in polytime

In this important model, part of the data is random, and decisions are 
in two stages – x before and y after the realization of random data: 

4. Stochastic Integer Programming

Suitably discretizing the sample space into n scenarios, 
the problem becomes a transposed n-fold integer program. 

While the Graver basis here cannot be computed in 
polytime, with some extra work we do get the following: 



Universality
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A[n] =

n

[1 1 1][3] =

Universality of N-Fold Integer Programming
Consider the following special form of the n-fold product operator,

Consider such m-fold products of the 1 x 3 matrix  [1 1 1]. For example,



Shmuel Onn

Universality of N-Fold Integer Programming

Reference: All linear and integer programs are slim 3-way programs
(De Loera, Onn) SIAM Journal on Optimization

{ x integer  :  [1 1 1][m][n]x = a, x ≥ 0 }

Universality Theorem: Universality Theorem: Any bounded set { y integer : By = b, y ≥ 0 } is in
polynomial-time-computable coordinate-embedding-bijection with some

A[n] =
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Scheme for Nonlinear Integer Programming:
any integer program max { f(y)  :  By = b,  y ≥ 0,  y integer }

n-fold program: max { f(x)  :  [1 1 1][m][n]x = a,  x ≥ 0,  x integer }
can be lifted to:

Universality of N-Fold Integer Programming

{ x integer  :  [1 1 1][m][n]x = a, x ≥ 0 }

Universality Theorem: Universality Theorem: Any bounded set { y integer : By = b, y ≥ 0 } is in
polynomial-time-computable coordinate-embedding-bijection with some

A[n] =



Epilogue:
Nonlinear Discrete Optimization
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Setup for Nonlinear Discrete Optimization

The problem is:
min/max { f(Wx) :  x in S }

It can be interpreted as balancing d criteria or player utilities Wix
and enables determination of broad useful classes of triples S,W,f
solvable efficiently (deterministically, randomly, or approximately)

with S set in Zn,  W integer d x n matrix,  f function on Zd.
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Setup for Nonlinear Discrete Optimization

The problem is:
min/max { f(Wx) :  x in S }

with S set in Zn,  W integer d x n matrix,  f function on Zd.

The presentation of S induces two branches:

Integer Programming:
S = {x in Zn : A(x) ≤ 0 }

given by (non)-linear inequalities

Combinatorial Optimization:
S in {0,1}n 

given compactly or by oracle
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Berstein, Lee, Maruri-Aguilar, Onn, Riccomagno, Weismantel, Wynn, SIAM J. Disc. Math.

Three Nonlinear Combinatorial Optimization Examples

Yael Hugo

Theorem ATheorem A:: For S matroid (e.g. trees, experimental designs) in polytime.

The problem is:
min/max { f(Wx) :  x in S }
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Theorem BTheorem B:: For S matroid intersection in randomized polytime.

Berstein, Lee, Maruri-Aguilar, Onn, Riccomagno, Weismantel, Wynn, SIAM J. Disc. Math.

Berstein, Lee, Onn, Weismantel, Mathematical Programming, to appear

Lee, Onn, Weismantel, SIAM J. Disc. Math.

Theorem CTheorem C:: For S independence system, d=1, approximation in polytime.

Three Nonlinear Combinatorial Optimization Examples

Theorem ATheorem A:: For S matroid (e.g. trees, experimental designs) in polytime.

The problem is:
min/max { f(Wx) :  x in S }
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Theory and applications of n-fold integer programming, 35 pages,
IMA Volume on Mixed Integer Nonlinear Programming, Springer, to appear



Comprehensive treatment is in my new monograph:

Based on my Nachdiplom Lectures
delivered at ETH Zurich in Spring 2009
(preliminary notes are in my homepage)

Nonlinear Discrete Optimization:
An Algorithmic Theory

Zurich Lectures in Advanced Mathematics,
European Mathematical Society, 150 pages, to appear




