Identifiability of

Phylogenetic Mixture Models

Elizabeth Allman, Sonja Petrović, John Rhodes, and Seth Sullivant

U. of Alaska- Fairbanks, U. of Illinois- Chicago, and NCSU

Harmony of Gröbner bases and the Modern Industrial Society Conference Osaka, Japan

28 June 2010

The Main Results: Two-tree Mixtures

Theorem

The tree parameters of the phylogenetic mixture model $\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{2}}$ are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if T_{1}, T_{2} are trivalent with $n \geq 4$ leaves.

Theorem*

The continuous parameters of the phylogenetic mixture model $\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{2}}$ are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if T_{1}, T_{2} are trivalent with $n \geq 5$ leaves.

Outline

(1) Phylogenetic Mixture Models
(2) Group-based Phylogenetic Models
(3) The Identifiability Problem
(9) Proof of Tree Identifiability
(1) Quartets
(2) Sextets
(3) Proof* of Parameter Identifiability
© Some Mathematical Surprises

Let T be a trivalent tree with n leaves. Leaves are labeled by $[n]:=\{1,2,3, \ldots, n\}$.
Associated to each edge of tree e is a Markov (structured) transition matrix M_{e}.
Once we specify T, and the M_{e}, get a probability distribution of characters at the leaves of the tree.

$$
\operatorname{Prob}(i, j, k)=\sum_{l=1}^{4} \sum_{m=1}^{4} r_{l} M_{1}(I, m) M_{2}(m, i) M_{3}(m, j) M_{4}(I, k)
$$

Think of phylogenetic model as a map

$$
\phi_{T}: \Theta \subseteq \mathbb{R}^{k} \rightarrow \Delta_{4^{n}}
$$

Given by polynomials: $\mathcal{M}_{T}:=\operatorname{im} \phi_{T}=\phi_{T}(\Theta)$, is the phylogenetic model.

Phylogenetic Mixture Models

Suppose there are k classes of sites in the genome.
Each class $j \in[k]$ evolved according to tree T_{j} on n leaves. Assuming that the classes are hidden, we observe a probability distribution of the form:
$\phi_{T_{1}, \ldots, T_{k}}\left(\pi,\left\{M_{e}\right\}\right)=\pi_{1} \cdot \phi_{T_{1}}\left(\left\{M_{e}^{1}\right\}\right)+\pi_{2} \cdot \phi_{T_{2}}\left(\left\{M_{e}^{2}\right\}\right)+\cdots+\pi_{k} \cdot \phi_{T_{k}}\left(\left\{M_{e}^{k}\right\}\right)$
where π_{j} is the relative proportion of sites of class j.

Definition

Let T_{1}, \ldots, T_{k} be trees with n leaves. The phylogenetic mixture model

$$
\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{2}} * \cdots * \mathcal{M}_{T_{k}}=\left\{\sum_{j=1}^{k} \pi_{j} p^{j}: \pi_{j} \geq 0, \sum \pi_{j}=1, p^{j} \in \mathcal{M}_{T_{j}}\right\}
$$

Why Mixture Models?

- Differing gene tree topologies
- Could explain evolution with recombination

Group-based Models

For remainder we focus on group-based models. Phylogenetic models with structured transition matrices.

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\left(\begin{array}{llll}
\alpha & \beta & \beta & \beta \\
\beta & \alpha & \beta & \beta \\
\beta & \beta & \alpha & \beta \\
\beta & \beta & \beta & \alpha
\end{array}\right) \quad\left(\begin{array}{llll}
\alpha & \beta & \gamma & \gamma \\
\beta & \alpha & \gamma & \gamma \\
\gamma & \gamma & \alpha & \beta \\
\gamma & \gamma & \beta & \alpha
\end{array}\right) \quad\left(\begin{array}{llll}
\alpha & \beta & \gamma & \delta \\
\beta & \alpha & \delta & \gamma \\
\gamma & \delta & \alpha & \beta \\
\delta & \gamma & \beta & \alpha
\end{array}\right)
$$

Cavender-Farris-Neyman (CFN), Jukes-Cantor (JC), Kimura 2-Parameter (K2P), Kimura 3-Parameter (K3P)
Transition structure is governed by a finite Abelian group G, such that

$$
M_{e}(g, h)=f_{e}(g-h)
$$

Theorem (Evans-Speed 1993, Hendy-Penny 1993)

Group-based models can be diagonalized by means of the discrete Fourier transform over G (Hadamard conjugation). In the Fourier coordinates, group-based models are toric varieties.

Fourier Coordinates

For each split $A \mid B$ in tree introduce a set of Fourier parameters

$$
\left\{a_{g}^{A \mid B}: g \in G\right\} .
$$

Theorem (Evans-Speed 1993, Hendy-Penny 1993)

In the Fourier coordinates, a group-based phylogenetic model is given parameterically by:

$$
q_{g_{1}, \ldots, g_{n}}=\left\{\begin{array}{cc}
\prod_{A \mid B \in \Sigma(T)}{ }^{A} \sum_{a \in A}^{A \mid B} & \text { if } g_{1}+\cdots+g_{n}=0 \\
0 & \text { if } g_{1}+\cdots+g_{n} \neq 0
\end{array}\right.
$$

In the JC, K2P, K3P, we take $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{A, C, G, T\}$. In the K2P model, we have $a_{G}^{A \mid B}=a_{T}^{A \mid B}$ for all $A \mid B$ In the JC model, we have $a_{C}^{A \mid B}=a_{G}^{A \mid B}=a_{T}^{A \mid B}$ for all $A \mid B$.

Doodles for Group-Based Models

$$
q_{C C T G C}=a_{C}^{1} a_{C}^{2} a_{T}^{3} a_{G}^{4} a_{C}^{5} a_{A}^{12 \mid 345} a_{T}^{123 \mid 45}
$$

$q_{C G T A} q_{A C T G}=q_{C G C G} q_{A T T A}$

The Identifiability Problem

Definition

The tree parameters T_{1}, \ldots, T_{k} in a k-class phylogenetic mixture model are identifiable if for all

$$
p \in \mathcal{M}_{T_{1}} * \cdots * \mathcal{M}_{T_{k}}
$$

there does not exist another set of k trees $T_{1}^{\prime}, \ldots, T_{k}^{\prime}$ such that

$$
p \in \mathcal{M}_{T_{1}^{\prime}} * \cdots * \mathcal{M}_{T_{k}^{\prime}} .
$$

Identifiable

Not Identifiable

Generic Identifiability

Definition

The tree parameters in a k-class phylogenetic mixture model are generically identifiable if for all nonequal multisets T_{1}, \ldots, T_{k}, and $T_{1}^{\prime}, \ldots, T_{k}^{\prime}$, $\operatorname{dim}\left(\mathcal{M}_{T_{1}} * \cdots * \mathcal{M}_{T_{k}} \cap \mathcal{M}_{T_{1}^{\prime} *} \cdots * \mathcal{M}_{T_{k}^{\prime}}\right)<\operatorname{dim}\left(\mathcal{M}_{T_{1}} * \cdots * \mathcal{M}_{T_{k}}\right)$.

Generic Identifiability of Continuous Parameters

Definition

Fix trees T_{1}, \ldots, T_{k} on n leaves. The continuous parameters of phylogenetic mixture model are generically identifiable if $\phi_{T_{1}, \ldots, T_{k}}$ is one-to-one (off of a set of measure zero (up to label swapping)).

Past Work on Identifiability of Tree Mixtures

- Identifiability Results:
- Allman and Rhodes (2006) $T_{1}=\ldots=T_{k}, k<n$.
- Stefankovic and Vigoda (2007) $T_{1}=\ldots=T_{k}$, JC, K2P
- Matsen, Mossel, and Steel (2008)
- Non-Identifiability Results:
- Matsen and Steel (2007)
- Stefankovic and Vigoda (2007)
- Mossel and Vigoda (2005)

Algebraic Methods for Proving Identifiability

Proposition

Let \mathcal{M}_{0} and \mathcal{M}_{1} be two algebraic models. If there exist polynomials f_{0} and f_{1} such that

$$
f_{i}(p)=0 \text { for all } p \in \mathcal{M}_{i} \text {, and } f_{i}(p) \neq 0 \text { for some } p \in \mathcal{M}_{1-i} \text {, then }
$$

$$
\operatorname{dim}\left(\mathcal{M}_{0} \cap \mathcal{M}_{1}\right)<\min \left(\operatorname{dim} \mathcal{M}_{0}, \operatorname{dim} \mathcal{M}_{1}\right)
$$

Proposition

Let \mathcal{M}_{0} and \mathcal{M}_{1} be two algebraic models. If there is a polynomial f_{0} such that

$$
\begin{gathered}
f_{0}(p)=0 \text { for all } p \in \mathcal{M}_{0}, \text { and } f_{0}(p) \neq 0 \text { for some } p \in \mathcal{M}_{1}, \text { and } \\
\qquad \operatorname{dim} \mathcal{M}_{1} \leq \operatorname{dim} \mathcal{M}_{0} \text { then } \\
\operatorname{dim}\left(\mathcal{M}_{0} \cap \mathcal{M}_{1}\right)<\min \left(\operatorname{dim} \mathcal{M}_{0}, \operatorname{dim} \mathcal{M}_{1}\right) .
\end{gathered}
$$

Proof of Tree Parameter Identifiability

Theorem

The tree parameters of the phylogenetic mixture model $\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{2}}$ are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if T_{1}, T_{2} are trivalent with $n \geq 4$ leaves.

Strategy: Prove theorem for quartets $n=4$ (using linear invariants), then lift to arbitrary sized trees:

Proposition

Let $T_{1}, T_{2}, T_{3}, T_{4}$ be n leaf trivalent trees. Suppose that there is a four element set $Q \subseteq[n]$ such that $\left\{\left.T_{1}\right|_{Q},\left.T_{2}\right|_{Q}\right\} \neq\left\{\left.T_{3}\right|_{Q},\left.T_{4}\right|_{Q}\right\}$. Then

$$
\operatorname{dim}\left(\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{2}} \cap \mathcal{M}_{T_{3}} * \mathcal{M}_{T_{4}}\right)<\operatorname{dim}\left(\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{2}}\right)
$$

From Six to Infinity

Proposition

There are no quartet-matched pairs of trees with 5 leaves. The only pair of quartet-matched pairs of trees on 6 leaves are:

T_{1}

T_{2}

T_{3}

T_{4}

Proposition

There are linear invariants that distinguish T_{1}, T_{2} from T_{3}, T_{4}.

Theorem (Matsen, Mossel, Steel 2007)

If two-tree mixtures are identifiable for trivalent trees with $n=6$ trees, they are identifiable for all trees with $n \geq 6$ leaves.

Identifiability of Continuous Parameters

Theorem*

The continuous parameters of the phylogenetic mixture model $\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{2}}$ are generically identifiable under the Jukes-Cantor and Kimura 2-parameter models if T_{1}, T_{2} are trivalent with $n \geq 5$ leaves.

$$
\left(\begin{array}{llll}
\alpha & \beta & \beta & \beta \\
\beta & \alpha & \beta & \beta \\
\beta & \beta & \alpha & \beta \\
\beta & \beta & \beta & \alpha
\end{array}\right) \quad\left(\begin{array}{llll}
\alpha & \beta & \gamma & \gamma \\
\beta & \alpha & \gamma & \gamma \\
\gamma & \gamma & \alpha & \beta \\
\gamma & \gamma & \beta & \alpha
\end{array}\right)
$$

Definition

Theorem* means that the result holds with high probability.

Proposition

Let $\phi: \mathbb{C}^{d} \rightarrow \mathbb{C}^{m}$ be a rational map. Then there is a Zariski open set $\Theta \subseteq \mathbb{C}^{d}$, such that $\# \phi^{-1}(\phi(\theta))$ is constant over Θ.
(1) So to prove* the Theorem* for a particular size tree, generate random rational parameter choices θ and then symbolically solve the simultaneous polynomial system

$$
\phi(t)=\phi(\theta)
$$

and hope for one solution.
(2) We check this using software SINGULAR, for JC and K2P on 4 and 5 leaf trees.
(3) Recovering parameters uniquely on quartets \Longrightarrow recover edge lengths \Longrightarrow recover parameters on arbitrary sized trees.

Why $n=5$ in Theorem*?

Proposition*

For T a four leaf tree under the Jukes-Cantor model, the continuous parameters in $\mathcal{M}_{T} * \mathcal{M}_{T}$ are not generically identifiable. The map $\phi_{T, T}$ is generically 6 -to-1 (up to label swapping).

For biologically relevant parameters, we observed between 1 and 4 biologically relevant preimages.

Another Mathematical Surprise

Theorem

For the Jukes-Cantor model

$$
\overline{\mathcal{M}_{T_{2}}} \subseteq \overline{\mathcal{M}_{T_{1}} * \mathcal{M}_{T_{3}}}
$$

Can the closure be dropped; i.e. does it happen for biologically meaningful parameter values?

- Develop methods to remove the * from a Theorem*
- Deal with the other group-based models (CFN, K3P)
(K3P: current joint work with M. Casanellas - computational)
- Beyond group-based models, GTR, GMM
- Beyond 2-tree mixtures to k-tree mixtures
(Recent work: M. Casanellas, J. Fernández-Sánchez, A. Kedzierska: some non-identifiability results)

