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Gröbner bases in discrete stochastics

1 Background on Markov chains:

detailed balance,
reversibility,
Kolmogorov’s condition.

2 Main result: Binomial ideal of reversibility.
3 Work in progress

other algebraic features,
Bayes,
from invariant probability to reversible transitions, e.g.
Metropolis-Hastings.



Detailed balance

A transition matrix Pv→w , v ,w ∈ V , satisfies the detailed balance
conditions if κ(v) > 0, v ∈ V , and

κ(v)Pv→w = κ(w)Pw→v , v ,w ∈ V .

It follows that π(v) ∝ κ(v) is an invariant probability and the Markov chain
Xn, n = 0, 1, . . . , has reversible two-step joint distribution

P (Xn = v ,Xn+1 = w) = P (Xn = w ,Xn+1 = v) , v ,w ∈ V , n ≥ 0.

Reversible MCs are important in Statistical Physics, e.g. for entropy production and in the simulation method Monte
Carlo Markov Chain MCMC.

Textbook on simulation: J.S. Liu, Monte Carlo strategies in scientific computing, Springer Series in Statistics (Springer,
New York, 2008), ISBN 978-0-387-76369-9; 0-387-95230-6; chapters on-line
http://www.people.fas.harvard.edu/~junliu/.

Original papers on MCMC: W.K. Hastings, Biometrika 57(1), 97 (1970),
http://dx.doi.org/10.1093/biomet/57.1.97 and P.H. Peskun, Biometrika 60, 607 (1973), ISSN 0006-3444.

Kolmogorov’s contribution: R.L. Dobrushin, Y.M. Sukhov, Ĭ. Fritts, Uspekhi Mat. Nauk 43(6(264)), 167 (1988), ISSN
0042-1316, http://dx.doi.org/10.1070/RM1988v043n06ABEH001985.

Textbook on MCs: D.W. Strook, An Introduction to Markov Processes, Number 230 in Graduate Texts in Mathematics
(Springer-Verlag, Berlin, 2005), Chapter 5 on MCMC.

In Statistical Physics: J.L. Lebowitz, H. Spohn, J. Statist. Phys. 95(1-2), 333 (1999), ISSN 0022-4715,
http://dx.doi.org/10.1023/A:1004589714161



2-reversible processes

The stochastic process (Xn)n≥0 with state space V is 2-reversible if

P (Xn = v ,Xn+1 = w) = P (Xn = w ,Xn+1 = v) , v ,w ∈ V , n ≥ 0.

The process is 1-stationary:

P (Xn = v) = P (Xn+1 = v) = π(v), v ∈ V , n ≥ 0.

Define V2 = {{v ,w} : v ,w ∈ V , v 6= w}, and

θ{v ,w} = 2P (Xn = v ,Xn+1 = w) , {v ,w} ∈ V2;

θv = P (Xn = v ,Xn+1 = v) , v ∈ V .

We have:

1 =
∑

v ,w∈V

P (Xn = v ,Xn+1 = w) =
∑
v∈V

θv +
∑

{v ,w}∈V2

θ{v ,w},

so that θ = (θV , θV2 ) belongs to the simplex ∆(V ∪ V2).

This parameterization is used in P. Diaconis, S.W.W. Rolles, Ann. Statist. 34(3), 1270 (2006), ISSN 0090-5364,
http://dx.doi.org/10.1214/009053606000000290



Restriction on a graph

We assume we are given the (undirected) connected graph G = (V , E) and
θ{v ,w} = 0 if {v ,w} /∈ E . The the vector of parameters
θ = (θv : v ∈ V , θe : e ∈ E) belong to the simplex ∆(V ∪ E).

The probability π is a linear function of the θ parameters:

π(v) =
∑
w∈V

P (Xn = v ,Xn+1 = w) = θv +
1

2

∑
y : {x,y}∈E

θ{v ,w}

or, if where Γ is the incidence matrix of the graph G

π = θV +
1

2
ΓθE .

The map

γ : ∆(V ∪ E) 3 θ =

[
θV
θE

]
7−→ π =

[
IV

1
2 Γ
] [θV
θE

]
∈ ∆(V )

is a surjective Markov map.

The image of (θV , 0), θV ∈ ∆(V ), is full; the image of (0, θE), θE ∈ ∆(E),
is the convex hull in ∆(V ) of the half points of each edge of the graph G.



Example: 6 vertexes, 8 edges

1

6

2

5

3

4

Γ =



{1, 2} {2, 3} {1, 6} {2, 5} {3, 4} {5, 6} {4, 5} {3, 6}
1 1 0 1 0 0 0 0 0
2 1 1 0 1 0 0 0 0
3 0 1 0 0 1 0 0 1
4 0 0 0 0 1 0 1 0
5 0 0 0 1 0 1 1 0
6 0 0 1 0 0 1 0 1





Reversible Markov chain

Assume that the 2-reversible process (Xn)n∈N is a Markov chain and
consider the undirected graph G = (V , E) such that {v ,w} ∈ E if, and only
if, θ{v ,w} > 0.

The transition probability are:

pv→w =
θ{v ,w}∑

w : {v ,w}∈E θ{v ,w}

so that, denoting
∑

w θ{x,w} by κ(v), we have the detailed balance
conditions

κ(v)Pv→w = κ(w)Pw→v .

Vice-versa, if there exist positive constants κ(v), v ∈ V such that the
datailed balance conditions hold, then the process is 2-reversible with π ∝ κ.



Reversibility on trajectories
Let ω = v0 · · · vn be a trajectory (path) in the connected graph G = (V , E) and
let rω = vn · · · v0 be the reversed trajectory.

Proposition

If the detailed balance holds, the the reversibility condition

P (ω) = P (rω)

holds for each trajectory ω.

Proof.

Write the detailed balance along the trajectory,

π(v0)Pv0→v1 = π(v1)Pv1→v0 ,

π(v1)Pv1→v2 = π(v2)Pv2→v1 ,

...

π(vn−1)Pvn−1→vn = π(vn)pvn→vn−1 ,

and clear π(v1) · · ·π(vn−1) in both sides of the product.



Kolmogorov’s condition

We denote by ω a closed trajectory, that is a tra-
jectory on the graph such that the last state co-
incides with the first one, ω = v0v1 . . . vnv0, and
by rω the reversed trajectory rω = v0vn . . . v1v0

1 2

4 3

1 2

4 3

Theorem (Kolmogorov)

Let the Markov chain (Xn)n∈N have a transition supported by the connected
graph G.

If the process is reversible, for all closed trajectory

Pv0→v1 · · ·Pvn→v0 = Pv0→vn · · ·Pv1→v0

If the equality is true for all closed trajectory, then the process is reversible.

The Kolmogorov’s condition does not involve the π, whose existence is
derived from Doeblin theorem.

Detailed balance, reversibility, Kolmogorov’s condition are algebraic in
nature and define binomial ideals.



Proof.

If P (ω) = P (rω), then for a closed trajectory we have ω = vv1 · · · vn−1v , we
have P (ω|X0 = v) = P (rω|Xn = v).

Vice-versa, assume that all closed trajectory have the displayed property. We
denote by x and y the first and the next to last vertices, respectively. By
summing on the intermediate vertices on all trajectory with same x and y ,
we obtain:∑

v2v3...vn−1

Px→v2Pv2→v3 · · ·Py→x =
∑

v2v3...vn−1

Px→y · · ·Pv3→v2Pv2→x

and
P(n−2)
x→y Py→x = Px→yP

(n−2)
x→y

where P
(n−2)
x→y denotes the (n− 2)-step transition probability. If n→∞, then

P
(n−2)
x→y → π(y), so that π(y)Py→x = Px→yπ(x).

Remark

Any algebraic proof?



Transition graph

From G = (V , E) an (undirected simple) graph, split each edge into two
opposite arcs to get a connected directed graph (without loops)
O = (V ,A). The arc going from vertex v to vertex w is (v → w). The
reversed arc is r(v → w) = (w → v).

1 2

4 3

1 2

4 3

A path or trajectory is a sequence of vertices ω = v0v1 · · · vn with
(vk−1 → vk) ∈ A, k = 1, . . . , n. The reversed path is rω = vnvn−1 · · · v0.
Equivalently, a path is a sequence of inter-connected arcs ω = a1 . . . an,
ak = (vk−1 → vk), and rω = r(an) . . . r(a1).



Circuits, cycles

A closed path ω = v0v1 · · · vn−1v0 is any path going from an initial v0 back
to v0; rω = v0vn−1 · · · v1v0 is the reversed closed path. If we do not
distinguish any initial vertex, the equivalence class of closed paths is called a
circuit.

A closed path is elementary if it has no proper closed sub-path, i.e. if does
not meet twice the same vertex except the initial one v0. The circuit of an
elementary closed path is a cycle.

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

C. Berge, Graphs, Vol. 6 of North-Holland Mathematical Library (North-Holland Publishing Co., Amsterdam, 1985),
ISBN 0-444-87603-0, second revised edition of part 1 of the 1973 English version, B. Bollobás, Modern graph theory,
Vol. 184 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1998), ISBN 0-387-98488-7.



Kolmogorov’s ideal

With indeterminates P = [Pv→w ], (v → w) ∈ A, form the ring
k[Pv→w : (v → w) ∈ A]. For a trajectory ω, define the monomial term

ω = a1 · · · an 7→ Pω =
n∏

k=1

Pak =
∏
a∈A

PNa(ω)
a ,

with Na(ω) the number of traversals of the arc a by the trajectory.

1 2

4 3

(3)

(3) (4)

(4)

(1) P1   2
3 P2   3

4 P3   4
4 P4   1

3 P4   2

2   3 3   4 4   2

4   1 1   22   3 3   4

4   1 1   22   3 3   4

4   1 1   22   3 3   4

ω 7→ Pω is a representation of the non-commutative path algebra on the commutative product of inderminates. Two
closed trajectories associated to the same circuit are mapped to the same monomial term because they have the same
traversal counts. The monomial term of a cycle is square-free.

Definition (K-ideal)

The Kolmogorov’s ideal or K-ideal of the graph G is the ideal generated by the
binomials Pω − P rω, where ω is any circuit.



Examples

For a given connected graph G, a transition matrix P = [Pv→w ], u, v ∈ V , is
compatible with G if Pv→w = 0 whenever (v → w) /∈ A and v 6= w . Let
out(v) be the set of arcs leaving v , and define the simplex

∆(v) =

Pv→· ∈ Rout(v)
+ :

∑
w∈out(v)

Pv→w (w) ≤ 1

 .

A transition matrix P compatible with G is a point in the product of
simplexes ∆(O) = ×u∈V ∆(u).

Examples of K-ideals

Let P be compatible with G and reversible.

1 The restriction of a compatible transition matrix Pv→w , (v → w) ∈ A, is a
point of the intersection of the variety of the K-ideal with ∆(O).

2 Let (Xn)n≥0 be the stationary Markov chain with reversible transition P.
Then the joint probabilities p(v ,w) = P (Xn = u,Xn+1 = v), (v → w) ∈ A,
are points in the intersection of the K-variety and the simplex
∆(A) =

{
p ∈ RA+ :

∑
a∈A P(a) ≤ 1

}
.



Basis of the K-ideal

Finite basis of the K-ideal

The K-ideal is generated by the set of binomials Pω − P rω, where ω is cycle.

Proof.

Let ω = v0v1 · · · v0 be a closed path which is not elementary and consider the
least k ≥ 1 such that vk = vk′ for some k ′ < k . Then the sub-path ω1 between
the k ′-th vertex and the k-th vertex is an elementary closed path and the residual
path ω2 = v0 · · · vk′vk+1 · · · v0 is closed and shorter than the original one. The
arcs of ω are in 1-to-1 correspondence with the arcs of ω1 and ω2. The procedure
can be iterated and stops in a finite number of steps. Hence, given any closed
path ω, there exists a finite sequence of cycles ω1, . . . , ωl , such that the list of
arcs in ω is partitioned into the lists of arcs of the ωi ’s. From Pωi − P rωi = 0,
i = 1, . . . , l , it follows

Pω =
l∏

i=1

Pωi =
l∏

i=1

P rωi = P rω.



Gröbner basis: recap

The K-ideal is generated by a finite set of binomials. A Gröbner basis is a special class of generating set of an ideal. We
refer to D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic
geometry and commutative algebra, Undergraduate Texts in Mathematics, 2nd edn. (Springer-Verlag, New York, 1997),
ISBN 0-387-94680-2 and M. Kreuzer, L. Robbiano, Computational commutative algebra. 1 (Springer-Verlag, Berlin,
2000), ISBN 3-540-67733-X for the relevant necessary and sufficient conditions.

The theory is based on the existence of a monomial order, i.e. a total order on monomial term which is compatible with
the product. Given such an order, the leading term LT(f ) of the polynomial f is defined. A generating set is a Gröbner
basis if the set of leading terms of the ideal is generated by the leading terms of monomials in the generating set. A
Gröbner basis is reduced if the coefficient of the leading term of each element of the basis is 1 and no monomial in any
element of the basis is in the ideal generated by the leading terms of the other element of the basis. The Gröbner basis
property depend on the monomial order. However, a generating set is a universal Gröbner basis if it is a Gröbner basis
for all monomial orders.

The finite algorithm for computing a Gröbner basis depends on the definition of sygyzy. Given two polynomial f and g
in the polynomial ring K , their sygyzy is the polynomial

S(f , g) =
LT(g)

gcd(LT(f ), LT(g))
f −

LT(f )

gcd(LT(f ), LT(g))
g.

A generating set of an ideal is a Gröbner basis if, and only if, it contains the sygyzy S(f , g) whenever it contains f and
g , see Chapter 6 in D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms: An introduction to computational
algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 2nd edn. (Springer-Verlag, New
York, 1997), ISBN 0-387-94680-2 or Theorem 2.4.1 p. 111 of M. Kreuzer, L. Robbiano, Computational commutative
algebra. 1 (Springer-Verlag, Berlin, 2000), ISBN 3-540-67733-X.
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Universal G-basis of the K-ideal

Universal G-basis

The binomials Pω − P rω, where ω is any cycle, form a reduced universal Gröbner
basis of the K-ideal.

Proof.

Let ω1 and ω2 be two cycles with ωi � rωi , i = 1, 2. Assume first they do not
have any arc in common. Then gcd(Pω1 ,Pω2 ) = 1 and the sygyzy is

S(Pω1−P rω1 ,Pω2−P rω2 ) = Pω2 (Pω1−P rω1 )−Pω1 (Pω2−P rω2 ) = Pω1P rω2−P rω1Pω2 ,

which belongs to the K-ideal.
Let now α be the common part. The sygyzy of Pω1 − P rω1 and Pω2 − P rω2 is

Pω1−αP rω2 − Pω2−αP rω1 = P rα(Pω1−αP rω2−rα − Pω2−αP rω1−rα) = 0,

which belongs to the K-ideal because ω1 − α + r(ω2 − α) is a union of cycles. In
fact ω1 − α and ω2 − α have in common the extreme vertices, corresponding to
tre extreme vertices of α. Notice that α is the common part of ω1 and ω2 only if
it is traversed in the same direction by both the cycles.



Example: square with 1 diagonal

Six cycles: ω1 = 1→ 2 2→ 4 4→ 1 (green), ω2 = 2→ 3 3→ 4 4→ 2,
ω3 = 1→ 2 2→ 3 3→ 2 4→ 1 (red), ω4 = rω1, ω5 = rω2,ω6 = rω3.

t
1 t

3
gcd t

1
{ },t

3

t
1 t

3
gcd t

1
{ }, t

3 t
3

gcd t
1

{ },t
3

r t
1

r

))
t

2
r t

2
t

3
gcd t

1
{ },r

0

ω1 In blue we have represented the common part of ω1 and ω3. ti = Pωi ,
rti = P rωi , i = 1, . . . , 6.

A monomial order is obtained by first introducing a total order on arcs. For example, one could give a total order on
vertexes, then order lexicographically the arc. We do not see any special order with particular meaning in this problem.
The issue is related with the monomial basis which is linear basis of the quotient ring.



Cycle space of O

For each cycle ω define cycle vector

za(ω) =


+1 if a is an arc of ω,

−1 if r(a) is an arc of ω,

0 otherwise.

a ∈ A.

The binomial Pω − P rω is written as Pz+(ω) − Pz−(ω).

The definition of z can be is extended to any circuit ω̄ by
za(ω̄) = Na(ω)− Na(rω).

There exists a sequence of cycles such that z(ω̄) = z(ω1) + · · ·+ z(ωl).

We can find nonnegative integers λ(ω) such that z(ω̄) =
∑
ω∈C λ(ω)z(ω),

i.e. it belongs to the integer lattice generated by the cycle vectors.

Z (O) is the cycle space, i.e. the vector space generated in kA by the cycle
vectors.



Cocycle space of O
For each subset W of V , define cocycle vector

ua(W ) =


+1 if a exits from W ,

−1 if a enters into W ,

0 otherwise.

a ∈ A.

1 2

4 3

W

The generated subspace of kA is the cocycle space U(O)

The cycle space and the cocycle space orthogonally split the vector space{
y ∈ kA : ya = −yr(a), a ∈ A

}
.

Note that for each cycle vector z(ω), cocycle vector u(W ),
za(ω)ua(W ) = zr(a)(ω)ur(a)(W ), a ∈ A, hence

z(ω) · u(W ) = 2
∑
a∈ω

ua(W ) = 2

 ∑
a∈ω,ua(W )=+1

1−
∑

a∈ω,ua(W )=−1

1

 = 0.

Chapter 2 of C. Berge, Graphs, Vol. 6 of North-Holland Mathematical Library (North-Holland Publishing Co.,
Amsterdam, 1985), ISBN 0-444-87603-0, second revised edition of part 1 of the 1973 English version; Section II.3 of
B. Bollobás, Modern graph theory, Vol. 184 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1998),
ISBN 0-387-98488-7.



Toric ideals

Let U be the matrix whose rows are the cocycle vectors u(W ), W ⊂ V . We
call the matrix U = [ua(W )]W⊂V ,a∈A the cocycle matrix.

Consider the ring k[Pa : a ∈ A] and the Laurent ring k(tW : W ⊂ V ),
together with their homomorphism h defined by

h : Pa 7−→
∏

W⊂V

t
ua(W )
W = tua .

The kernel I (U) of h is the toric ideal of U. It is a prime ideal and the

binomials Pz+ − Pz− , z ∈ ZA, Uz = 0 are a generating set of I (U) as a
k-vector space.

As for each cycle ω we have Uz(ω) = 0, the cycle vector z(ω) belongs to

kerZ U =
{
z ∈ ZA : Uz = 0

}
. Moreover, Pz+(ω) = Pω, Pz−(ω) = P rω,

therefore the K-ideal is contained in the toric ideal I (U).

Chapter 4 B. Sturmfels, Gröbner bases and convex polytopes (American Mathematical Society, Providence, RI, 1996),
ISBN 0-8218-0487-1, A. Bigatti, L. Robbiano, Matemática Contemporânea 21, 1 (2001).



The K-ideal is toric

The K-ideal is the toric ideal of the cocycle matrix.

Let C denote the set of cycles and let z =
∑
ω∈C λ(ω)z(ω) be a nonzero

element of kerZ(U).

For all ω ∈ C we have −u(ω) = u(rω), so that we can assume all the λ(ω)’s
to be non-negative.

Notice also that we can arrange things in such a way that at most one of the
two direction of each cycle has a positive λ(ω). We define

A+(z) = {a ∈ A : za > 0} , A−(z) = {a ∈ A : za < 0} ,

and consider two subgraph of O with a restricted set of arcs,
O+(z) = (V ,A+(z)), O−(z) = (V ,A−(z)). We drop from now on the
dependence on z for ease of notation. We note that rA+ = A− and
rA− = A+.



Proof

1 We show first that A+ must contain a cycle. If O+ where acyclic, it would
exists a vertex v such that out(v) ∩ A+ = ∅ and in(v) ∩ A+ 6= ∅. Let u(v)
be the cocycle vector of {v}; we derive a contradiction to the assumption
z · u(v) = 0. In fact,

z · u(v) =
∑
a∈A+

zaua(v) +
∑
a∈A−

zaua(v)

= 2
∑
a∈A+

zaua(v) = 2
∑

a∈A+∩in(v)

zaua(v) ≤ −1.

2 Let ω be a cycle in A+ and define an integer α(ω) ≥ 1 such that z+ − α(ω)z+(ω) ≥ 0 and it is zero for at least

one aω. The vector z1 = z − α(ω)z(ω) is a cycle vector. i.e. belongs to kerZ U, and A+(z1) ⊂ A+(z).

3 By repeating the same step a finite number of times we obtain a new representation of z in the form
z =

∑
ω∈C α(ω)z(ω) where the support of each α(ω)z+(ω) is contained in A+. It follows

z+ =
∑
ω∈C α(ω)z+(ω) and z− =

∑
ω∈C α(ω)z−(ω).

4 It follows that

Pz+
− Pz− =

∏
ω∈C

(Pz+(ω))α(ω) −
∏
ω∈C

(Pz−(ω))α(ω)

belongs to the K-ideal.



Example of proof

1→ 2 2→ 1 2→ 3 3→ 2 3→ 4 4→ 3 4→ 1 1→ 4 2→ 4 4→ 2

z(ωA) = ( 1 −1 0 0 0 0 1 −1 1 −1 )

z(ωB) = ( 0 0 1 −1 1 −1 0 0 −1 1 )

z(ωC) = ( 1 −1 1 −1 1 −1 1 −1 0 0 )

+ 2 =

1 1 1 12 2 2 2

4 4 4 43 3 3 3

+ 2

(3)

(3) (4)

(4)

(1)

z(ω) = z(ωA) + 2z(ωB) + 2z(ωC) = (3 ,−3 , 4 ,−4 , 4 ,−4 , 0 , 0 ,−1 , 1)

z+(ω) = z+(ωB) + 3z+(ωC) = (3 , 0 , 4 , 0 , 4 , 0 , 0 , 0 , 0 , 1)

+ 3=

1 11 2 22

4 44 3 33

(3)

(3) (4)

(4)

(1)



Work in progress

In the ring R[t,Pv→w : (v → w) ∈ A], the positive Kolmogorov’s ideal is
the binomial ideal sum of the Kolmogorov’s ideal and

J = Ideal
(
t
∏

(v→w)∈A Pv→w − 1
)

.

Let ω1, . . . , ωm, be the elementary path obtained from a spanning tree. The
sequence z(ωi ), i = 1, . . . ,m, is a basis of the elementary closed paths. The
positive K-ideal of O is the sum of J with the ideal generated by Pωi − P rωi ,
i = 1, . . . ,m, i.e. binomials on a basis of the closed paths. In fact, we can
generate any elementary closed path and clear the common factors by J.

The monomial parameterization of the positive K-ideal leads to an
alternative presentation of the statistical model.

The detailed balance ideal is the ideal of
Q[k(v) : v ∈ V ,Pv→w : (v → w) ∈ E ] generated by

∏
v∈V k(v)− 1,∑

v Pv→w − 1, and k(u)Pv→w − k(v)Pv→u, (v → w) ∈ E .

If the graph is connected, then the Kolmogorov ideal is the k-elimination
ideal of the detailed balance ideal.



CoCoA elimination
1

6

2

5

3

4

Use S::=Q[t,k[1..6],p[1..6,1..6]];

Set Indentation;

NI:=6; M:=[];

Define Lista(L,NI);

For I:=1 To NI Do

For J:=1 To I-1 Do

Append(L,k[I]p[I,J]-k[J]p[J,I]); EndFor;

EndFor; Return L; EndDefine;

N:=Lista(M,NI);

LL:=t*Product([k[I]|I In 1..NI])-1; Append(N,LL);

P0:=[p[1,3],p[1,4],p[1,5],p[2,4],p[2,6], p[3,1],p[3,5],

p[4,1],p[4,2],p[4,6],p[5,1],p[5,3],p[6,2],p[6,4]];

N:=Concat(N,P0);

E:=Elim(k,Ideal(N)); GB:=ReducedGBasis(E); GB;



CoCoA output

GB;

[

p[1,3], p[1,4], p[1,5], p[2,4], p[2,6], p[3,1], p[3,5],

p[4,1], p[4,2], p[4,6], p[5,1], p[5,3], p[6,2], p[6,4],

p[2,3]p[3,4]p[4,5]p[5,2] - p[2,5]p[3,2]p[4,3]p[5,4],

p[1,2]p[2,3]p[3,6]p[6,1] - p[1,6]p[2,1]p[3,2]p[6,3],

p[1,2]p[2,5]p[5,6]p[6,1] - p[1,6]p[2,1]p[5,2]p[6,5],

p[2,5]p[3,2]p[5,6]p[6,3] - p[2,3]p[3,6]p[5,2]p[6,5],

p[3,4]p[4,5]p[5,6]p[6,3] - p[3,6]p[4,3]p[5,4]p[6,5],

p[1,2]p[2,5]p[3,6]p[4,3]p[5,4]p[6,1] -

p[1,6]p[2,1]p[3,4]p[4,5]p[5,2]p[6,3],

p[1,2]p[2,3]p[3,4]p[4,5]p[5,6]p[6,1] -

p[1,6]p[2,1]p[3,2]p[4,3]p[5,4]p[6,5]]



Joint 2-distributions with a given stationary π

Given π, the fiber γ−1(π) is contained in an affine space parallel to the
subspace θv + (1/2)

∑
y : {x,y}∈E θ{x,y} = 0.

Each fiber contains special solutions.

One is the zero transition case (π, 0E).
If the graph has full connections, G = (V ,V2), there is the
independence solution θv = π(v)2, θ{v ,w} = 2π(v)π(w).
If π(v) > 0, v ∈ V , a strictly positive solution is obtained as follows.
Let d(v) = # {w : {v ,w} ∈ E} be the degree of the vertex v and
define a transition probability by Av→w = 1/2d(w) if {v ,w} ∈ E ,
Av→v = 1/2, and Av→w = 0 otherwise. A is the transition matrix of a
random walk on the graph G, stopped with probability 1/2. Define a
probability on V × V with Q(v ,w) = π(v)Av→w . If
Q(v ,w) = Q(w , v), we have a 2-reversible probability with marginal π.
Otherwise, take Q(v ,w) ∧ Q(w , v), {v ,w} ∈ E .



Metropolis–Hastings algorithm

Proposition

Let Q be a probability on V × V , strictly positive on E , and let
π(x) =

∑
y Q(x , y). If f :]0, 1[×]0, 1[→]0, 1[ is a simmetric function such that

f (u, v) ≤ u ∧ v then

P(x , y) =


f (Q(x , y),Q(y , x)) {x , y} ∈ E
π(x)−

∑
y : y 6=x P(x , y) x = y

0 otherwise,

is a 2-reversible probability on E such that π(x) =
∑

y P(x , y), positive if Q is
positive.

The proposition applies to

f (u, v) = u ∧ v . This is the Hastings case: u ∧ v = u(1 ∧ (v/u))

f (u, v) = uv/(u + v). This is the Barker case: uv/(u + v) = u(1 + u/v)−1

f (u, v) = uv . This is one of the Hastings general form.



Proof.

For {x , y} ∈ E we have P(x , y) = P(y , x) > 0. As P(x , y) ≤ Q(x , y), x 6= y , it
follows

P(x , x) = π(x)−
∑

y : y 6=x

P(x , y)

≥
∑
y

Q(x , y)−
∑

y : y 6=x

Q(x , y)

= Q(x , x) > 0.

We have
∑

y P(x , y) = π(x) by construction and, in particular, P is a probability
on V × V .

Given a positive Q, the corresponding parameters for P

θ{x,y} = 2P(x , y), θ{x} = P(x , x)

are strictly positive. We have shown the existence of a mapping from the
interior of ∆(V ) to the interior of ∆(V1 ∪ E).

The mapping θ 7→ (π,Pxy = P(x,y)
π(x) ) is a rational mapping from ∆(V1 ∪ V2)

into ∆(V )⊗∆(V )⊗V .



Example 1B

1

6

2

5

3

4
Q =



1 2 3 4 5 6
1 0 1

2π(1) 0 0 0 1
2π(1)

2 1
3π(2) 0 1

3π(2) 0 1
3π(2) 0

3 0 1
3π(3) 0 1

3π(3) 0 1
3π(3)

4 0 0 1
2π(4) 0 1

2π(4) 0
5 0 1

3π(5) 0 1
3π(5) 0 1

3π(5)
6 1

3π(6) 0 1
3π(6) 0 1

3π(6) 0



P =



1 2 3 4 5 6

P(11) 1
6π(1)π(2) 0 0 0 1

6π(1)π(6)
1
6π(1)π(2) P(22) 1

9π(2)π(3) 0 1
9π(2)π(5) 0

0 1
9π(2)π(3) P(33) 1

6π(3)π(4) 0 1
9π(3)π(6)

0 0 1
6π(3)π(4) P(44) 1

6π(4)π(5) 0
0 1

9π(2)π(5) 0 1
6π(4)π(5) P(55) 1

9π(5)π(6)
1
6π(1)π(6) 0 1

9π(3)π(6) 0 1
9π(5)π(6) P(66)





Example 1C

9θE =



edges

{1, 2} 3π(1)π(2)
{2, 3} 2π(2)π(3)
{1, 6} 3π(1)π(6)
{2, 5} 2π(2)π(5)
{3, 4} 3π(3)π(4)
{5, 6} 2π(5)π(6)
{4, 5} 3π(4)π(5)
{3, 6} 2π(3)π(6)


and θV = π − 1

2
ΓθE

log θ̄E = const + Γtπ

θ̄V = π − 1
2 Γθ̄E

δV + 1
2 ΓδE = 0

⇐⇒ θ = θ̄ + δ ∈ γ−1(π)



Example 1D

π(x) = Binomial(5, p)(x − 1) =⇒

9θE =



edges

{1, 2} 3
(

5
0

)
p0(1− p)5

(
5
1

)
p1(1− p)4

{2, 3} 2
(

5
1

)
p1(1− p)4

(
5
2

)
p2(1− p)3

{1, 6} 3
(

5
0

)
p0(1− p)5

(
5
5

)
p5(1− p)0

{2, 5} 2
(

5
1

)
p1(1− p)4

(
5
4

)
p4(1− p)1

{3, 4} 3
(

5
2

)
p2(1− p)3

(
5
3

)
p3(1− p)2

{5, 6} 2
(

5
4

)
p4(1− p)1

(
5
5

)
p5(1− p)0

{4, 5} 3
(

5
3

)
p3(1− p)2

(
5
4

)
p4(1− p)1

{3, 6} 2
(

5
2

)
p2(1− p)5

(
5
5

)
p5(1− p)0


=



3
(

5
0

)(
5
1

)
p1(1− p)9

2
(

5
1

)(
5
2

)
p3(1− p)4

3
(

5
0

)(
5
5

)
p5(1− p)5

2
(

5
1

)(
5
4

)
p5(1− p)5

3
(

5
2

)(
5
3

)
p5(1− p)5

2
(

5
4

)(
5
5

)
p9(1− p)1

3
(

5
3

)(
5
4

)
p7(1− p)3

2
(

5
2

)(
5
5

)
p7(1− p)3




