Dualities in Convex Algebraic Geometry
 © Second CREST-SBM International Conference, Osaka

Philipp Rostalski

joint work with B. Sturmfels

Department of Mathematics
UC Berkeley

June 28, 2010

What is Convex Algebraic Geometry?

Convex geometry

Convex body: P

Algebraic geometry

Algebraic variety: X

Optimization

Optimization problem: Minimize $c^{T} x$
$x \in S$

Notions of duality: Convex geometry

Let P be a full-dimensional convex body in V and assume that $0 \in \operatorname{int}(P)$.
Def. Dual convex body:

$$
P^{\Delta}=\left\{u \in V^{*} \mid \forall x \in P: u^{T} x \leq 1\right\}
$$

Convex body P

Dual body P^{Δ}

Notions of duality: Convex geometry

Let P be a full-dimensional convex body in V and assume that $0 \in \operatorname{int}(P)$.
Def. Dual convex body:

$$
P^{\Delta}=\left\{u \in V^{*} \mid \forall x \in P: u^{T} x \leq 1\right\}
$$

Convex body P

Dual body P^{Δ}

Important: $\left(P^{\Delta}\right)^{\Delta}=P$.

Notions of duality: Algebraic geometry

Let $X \subset \mathbb{P}^{n}$ be a projective variety and $u=\left(u_{0}: u_{1}: \cdots: u_{n}\right) \in\left(\mathbb{P}^{n}\right)^{\vee}$ represents the hyperplane $\left\{x \in \mathbb{P}^{n} \mid \sum_{i} u_{i} x_{i}=0\right\}$.

Def. Dual variety:

The dual variety X^{*} of an algebraic variety X is the closure of

$$
\left\{u \in\left(\mathbb{P}^{n}\right)^{\vee} \mid u \text { is tangent to } X \text { at } x \in X_{\text {reg }}\right\} .
$$

Algebraic varieties X

Dual varieties X^{*}

Example: Dual varieties

Trivial example: $L^{*}=L^{\perp}$ for any linear subspace $L \subset V$.

Example: Dual varieties

Trivial example: $L^{*}=L^{\perp}$ for any linear subspace $L \subset V$.

Example: The variety $X=V\left(x^{4}+y^{4}-z^{4}\right) \subset \mathbb{P}^{2}$ yields

$$
\begin{aligned}
X^{*}= & V\left(a^{12}+3 a^{8} b^{4}+3 a^{4} b^{8}+b^{12}-3 a^{8} c^{4}+21 a^{4} b^{4} c^{4}\right. \\
& \left.-3 b^{8} c^{4}+3 a^{4} c^{8}+3 b^{4} c^{8}-c^{12}\right) .
\end{aligned}
$$

Algebraic variety X

Dual variety X^{*}

Notions of duality: Optimization

Let
$\operatorname{Minimize} \quad c^{\top} x$

$$
\begin{array}{ll}
\text { subject to } & g_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{array}
$$

be a constrained optimization problem and

$$
\begin{aligned}
& L: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} \quad \rightarrow \quad \mathbb{R}^{n} \\
& (x, \lambda, \mu) \quad \mapsto \quad c^{T} x+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)+\sum_{j=1}^{p} \mu_{j} h_{j}(x)
\end{aligned}
$$

the associated Lagrangian.

Then optimization problem (1) can be written as

$$
u^{*}=\underset{x \in \mathbb{R}^{n}}{\operatorname{Minimize}} \underset{\mu \in \mathbb{R}^{p} \text { and } \lambda \geq 0}{\text { Maximize }} L(x, \lambda, \mu)
$$

and the dual optimization problem to (1) is

$$
v^{*}=\underset{\mu \in \mathbb{R}^{P} \text { and } \lambda \geq 0}{\operatorname{Maximize}} \underbrace{\operatorname{Minimize}_{x \in \mathbb{R}^{n}}^{\text {Min }} L(x, \lambda, \mu)}_{\phi(\lambda, \mu)} .
$$

Optimality conditions [Karush,Kuhn and Tucker]

Let (x, λ, μ) be primal and dual optimal solutions with $u^{*}=v^{*}$ (strong duality). Then

$$
\begin{align*}
c+\left.\sum_{i=1}^{m} \lambda_{i} \cdot \nabla_{x} g_{i}\right|_{x}+\left.\sum_{j=1}^{p} \mu_{j} \cdot \nabla_{x} h_{j}\right|_{x} & =0, \tag{2}\\
g_{i}(x) & \leq 0 \text { for } i=1, \ldots, m, \\
\lambda_{i} & \geq 0 \text { for } i=1, \ldots, m, \\
h_{j}(x) & =0 \text { for } j=1, \ldots, p,
\end{align*}
$$

Complementary slackness: $\quad \lambda_{i} \cdot g_{i}(x)=0$ for $i=1, \ldots, m$.

Notions of duality

Dual body P^{Δ}

Algebraic geometry

Dual varieties X^{*}

Optimization

Dual problem: Maximize $b^{T} y$ $y \in \mathcal{T}$

Outline

(1) Different notions of duality
(2) Algebraic geometry and optimization

- Relation
- Application
- Example
(3) Convex and algebraic geometry
- Relation
- Application
- Example

4 Optimization and convex geometry

- Relation
- Application
- Example

Algebraic geometry and optimization

Consider the following optimization problem:

$$
\begin{aligned}
c_{0}= & \underset{x}{\operatorname{Minimize}} c^{T} x \\
& \text { s.t. }
\end{aligned}
$$

$$
x \in X=\left\{v \in \mathbb{R}^{n} \mid h_{1}(v)=\cdots=h_{p}(v)=0\right\}
$$

with compact, smooth and irreducible algebraic variety X and dual variety $X^{*}=V(\phi)$ (a hypersurface defined by $\left.\phi\left(u_{0}, \ldots, u_{n}\right)=0\right)$.

Algebraic geometry and optimization

Consider the following optimization problem:

$$
\begin{align*}
c_{0}= & \underset{x}{\operatorname{Minimize}} c^{T} x \\
& \text { s.t. } \tag{3}
\end{align*}
$$

$$
x \in X=\left\{v \in \mathbb{R}^{n} \mid h_{1}(v)=\cdots=h_{p}(v)=0\right\}
$$

with compact, smooth and irreducible algebraic variety X and dual variety $X^{*}=V(\phi)$ (a hypersurface defined by $\left.\phi\left(u_{0}, \ldots, u_{n}\right)=0\right)$.

Theorem [R., Sturmfels, 2010]:

The optimal value function for the optimization problem (3) is an algebraic function given by $\phi\left(-c_{0}, c_{1}, \ldots, c_{n}\right)=0$.

Application: Parametric optimization

Example: Optimization over the TV screen

$$
c_{0}=\underset{x}{\operatorname{Minimize}} c_{1} x_{1}+c_{2} x_{2}
$$

s.t.

$$
x \in X=V\left(x_{1}^{4}+x_{2}^{4}-1\right)
$$

Optimality condition:

$$
\begin{aligned}
c_{1} & =\lambda_{1} 4 x_{1}^{3} \\
c_{2} & =\lambda_{1} 4 x_{2}^{3} \\
1 & =x_{1}^{4}+x_{2}^{4} \\
c_{0} & =c_{1} x_{1}+c_{2} x_{2} .
\end{aligned}
$$

Elimination of x, λ yields

$$
\begin{aligned}
\phi\left(-c_{0}, c_{1}, c_{2}\right)= & c_{1}^{12}+3 c_{1}^{8} c_{2}^{4}+3 c_{1}^{4} c_{2}^{8}+c_{2}^{12}-3 c_{0}^{4} c_{1}^{8}+21 c_{0}^{4} c_{1}^{4} c_{2}^{4} \\
& -3 c_{0}^{4} c_{2}^{8}+3 c_{0}^{8} c_{1}^{4}+3 c_{0}^{8} c_{1}^{4}-c_{0}^{12}
\end{aligned}
$$

Convex and algebraic geometry

Def.: Algebraic boundary
The algebraic boundary $\partial_{a} P$ of a convex body P is the Zariski closure ∂P.

Example: The 4-norm ball

$$
P=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{4}+y^{4} \leq 1\right\}
$$

$$
P^{\Delta}=\left\{\left.(a, b) \in \mathbb{R}^{2}| | a\right|^{4 / 3}+|b|^{4 / 3} \leq 1\right\}
$$

with

$$
\partial_{a} P=V\left(x^{4}+y^{4}-1\right)
$$

and

$$
\partial_{a} P^{\Delta}=V\left(a^{12}+3 a^{8} b^{4}+3 a^{4} b^{8}+b^{12}-3 a^{8}+21 a^{4} b^{4}-3 b^{8}+3 a^{4}+3 b^{4}-1\right) .
$$

Application: Computing convex hulls

Theorem [Ranestad, Sturmfels, 2010]:
Let $P=\operatorname{conv} X$ the convex hull of a smooth algebraic variety X. Then

$$
\partial_{a} P \subseteq \bigcup_{k}\left(X^{[k]}\right)^{*}
$$

where $X^{[k]}=\overline{\{\text { hyperplanes tangent to } X \text { at } k \text { smooth points }\}}$.
Note: $X^{[1]}=X^{*}$ and $\left(X^{[1]}\right)^{*}=\left(X^{*}\right)^{*}=X$.

A tritangent plane in $X^{[3]}$.

Example: Convex hull of a space curve

Algebraic curve $X=(\cos (\theta), \cos (2 \theta), \sin (3 \theta))$ in \mathbb{R}^{3} or equivalently $X=V\left(h_{1}, h_{2}\right)$ with

$$
\begin{aligned}
& h_{1}=2 x^{2}-y-1 \\
& h_{2}=4 y^{3}+2 z^{2}-3 y-1
\end{aligned}
$$

Convex hull:

- Two tritangent planes $z=1$ and $z=-1\left(\right.$ components of $\left.\left(X^{[3]}\right)^{*}\right)$
- Edge surface $\left(X^{[2]}\right)^{*}$ with three irreducible components:
- Quadratic surface $V\left(h_{1}\right)$
- Cubic surface $V\left(h_{2}\right)$
- Surface of degree 16

Curve X and its convex hull.

$$
\begin{aligned}
& h_{3}=-419904 x^{14} y^{2}+664848 x^{12} y^{4}-419904 x^{10} y^{6}+132192 x^{8} y^{8}-20736 x^{6} y^{10}+1296 x^{4} y^{12} \\
& -46656 x^{14} z^{2}+373248 x^{12} y^{2} z^{2}-69984 x^{10} y^{4} z^{2}-22464 x^{8} y^{6} z^{2}+4320 x^{6} y^{8} z^{2}+31104 x^{12} z^{4} \\
& +5184 x^{10} y^{2} z^{4}+4752 x^{8} y^{4} z^{4}+1728 x^{10} z^{6}+699840 x^{14} y-46656 x^{12} y^{3}-902016 x^{10} y^{5} \\
& +694656 x^{8} y^{7}-209088 x^{6} y^{9}-1150848 x^{10} y^{3} z^{2}+279936 x^{8} y^{5} z^{2}+17280 x^{6} y^{7} z^{2}-4032 x^{4} y^{9} z^{2} \\
& -98496 x^{10} y z^{4}+27072 x^{4} y^{11}-1152 x^{2} y^{13}-419904 x^{12} y z^{2}-25920 x^{8} y^{3} z^{4}-4608 x^{6} y^{5} z^{4} \\
& -1728 x^{8} y z^{6}-291600 x^{14}-169128 x^{12} y^{2}-256608 x^{10} y^{4}+956880 x^{8} y^{6}-618192 x^{6} y^{8} \\
& +148824 x^{4} y^{10}-13120 x^{2} y^{12}+256 y^{14}+392688 x^{12} z^{2}+671976 x^{10} y^{2} z^{2}+1454976 x^{8} y^{4} z^{2} \\
& -292608 x^{6} y^{6} z^{2}-4272 x^{4} y^{8} z^{2}+1016 x^{2} y^{10} z^{2}-116208 x^{10} z^{4}+135432 x^{8} y^{2} z^{4}+18144 x^{6} y^{4} z^{4} \\
& +1264 x^{4} y^{6} z^{4}-5616 x^{8} z^{6}+504 x^{6} y^{2} z^{6}-1108080 x^{12} y+925344 x^{10} y^{3}+215136 x^{8} y^{5} \\
& -672192 x^{6} y^{7}+331920 x^{4} y^{9}-54240 x^{2} y^{11}+2304 y^{13}+273456 x^{10} y z^{2}+282528 x^{8} y^{3} z^{2} \\
& -1185408 x^{6} y^{5} z^{2}+149376 x^{4} y^{7} z^{2}-368 x^{2} y^{9} z^{2}-32 y^{11} z^{2}+273456 x^{8} y z^{4}-67104 x^{6} y^{3} z^{4} \\
& -4704 x^{4} y^{5} z^{4}-64 x^{2} y^{7} z^{4}+4752 x^{6} y z^{6}-32 x^{4} y^{3} z^{6}+747225 x^{12}+636660 x^{10} y^{2} \\
& -908010 x^{8} y^{4}-65340 x^{6} y^{6}+291465 x^{4} y^{8}-101712 x^{2} y^{10}+8256 y^{12}-818100 x^{10} z^{2} \\
& -1405836 x^{8} y^{2} z^{2}-905634 x^{6} y^{4} z^{2}+583824 x^{4} y^{6} z^{2}-39318 x^{2} y^{8} z^{2}+368 y^{10} z^{2}+193806 x^{8} z^{4} \\
& -28299 x^{6} y^{2} z^{4}+15450 x^{4} y^{4} z^{4}+716 x^{2} y^{6} z^{4}+y^{8} z^{4}+6876 x^{6} z^{6}-1140 x^{4} y^{2} z^{6}+2 x^{2} y^{4} z^{6} \\
& +x^{4} z^{8}+507384 x^{10} y-809568 x^{8} y^{3}+569592 x^{6} y^{5}-27216 x^{4} y^{7}-71648 x^{2} y^{9}+13952 y^{11} \\
& ++98 \text { other terms }+
\end{aligned}
$$

Optimization and convex geometry

SDP: Linear optimization over a spectrahedron ${ }^{1}$

$$
\begin{aligned}
& p^{*}=\underset{x}{\operatorname{Minimize}} c^{T} x \\
& \quad \text { s.t. } \\
& \quad x \in P=\left\{v \in \mathbb{R}^{m} \mid Q(v)=Q_{0}+\sum_{i} v_{i} Q_{i} \succeq 0\right\}
\end{aligned}
$$

Proposition:

The (Lagrange) dual optimization problem can be written as:

$$
\begin{aligned}
& d^{*}=\underset{c_{0}}{\operatorname{Maximize}} c_{0} \\
& \text { s.t. } \\
& \\
& \quad \frac{1}{c_{0}} c \in P^{\Delta} .
\end{aligned}
$$

Harmony in Semidefinite Optimization: An algebraic view

Primal SDP:

$$
p^{*}:=\operatorname{Minimize}_{X \in \mathcal{S}_{+}^{n}}\left\langle B, Q_{0}-X\right\rangle \text { subject to } X \in\left(Q_{0}+\mathcal{W}\right) \cap \mathcal{S}_{+}^{n}
$$

Dual:

$$
d^{*}:=\underset{Y \in \mathcal{S}_{+}^{n}}{\operatorname{Maximize}}\left\langle Q_{0}, Y\right\rangle \text { subject to } Y \in\left(B+\mathcal{W}^{\perp}\right) \cap \mathcal{S}_{+}^{n}
$$

with $B, Q_{0} \succ 0, \mathcal{W}=\operatorname{span}\left(Q_{1}, \ldots, Q_{n}\right)$ and $\left\langle Q_{i}, B\right\rangle=c_{i}$ for $i=1, \ldots, m$.

Optimality condition: Assuming strict feasibility of primal and dual optimization problem, an optimal pair of solutions (X, Y) satisfy the following KKT conditions:

$$
\begin{aligned}
X & \in\left(Q_{0}+\mathcal{W}\right) \cap \mathcal{S}_{+}^{n} \\
Y & \in\left(B+\mathcal{W}^{\perp}\right) \cap \mathcal{S}_{+}^{n} \\
X \cdot Y & =0 \quad(\text { complementary slackness })
\end{aligned}
$$

Optimality condition: Assuming strict feasibility of primal and dual optimization problem, an optimal pair of solutions (X, Y) satisfy the following KKT conditions:

$$
\begin{array}{lll}
X \in\left(Q_{0}+\mathcal{W}\right) \cap \mathcal{S}_{+}^{n} & \text { homogenize }: & X \in \mathcal{U}=\mathbb{R} Q_{0}+\mathcal{W} \\
Y \in\left(B+\mathcal{W}^{\perp}\right) \cap \mathcal{S}_{+}^{n} & & Y \in \mathcal{L}^{\perp}=\mathbb{R} B+\mathcal{W}^{\perp}
\end{array}
$$

$X \cdot Y=0 \quad$ (complementary slackness).

Optimality condition: Assuming strict feasibility of primal and dual optimization problem, an optimal pair of solutions (X, Y) satisfy the following KKT conditions:

$$
\begin{array}{rlrl}
X \in\left(Q_{0}+\mathcal{W}\right) \cap \mathcal{S}_{+}^{n} & \text { homogenize : } & X \in \mathcal{U}=\mathbb{R} Q_{0}+\mathcal{W} \\
Y \in\left(B+\mathcal{W}^{\perp}\right) \cap \mathcal{S}_{+}^{n} & & Y \in \mathcal{L}^{\perp}=\mathbb{R} B+\mathcal{W}^{\perp} \\
X \cdot Y & =0 & (\text { complementary slackness }) . &
\end{array}
$$

"Algebraic" SDP:

Given any a flag of linear subspaces $\mathcal{U} \subset \mathcal{L} \subset \mathcal{S}^{n}$ with $\operatorname{dim}(\mathcal{U} / \mathcal{L})=2$, find the unique semidefinite point $(X, Y) \in \mathcal{U} \times \mathcal{L}^{\perp}$ in $X \cdot Y=0$.

Nie, Ranestad and Sturmfels showed the following decomposition into irreducible components:

$$
\{X \cdot Y=0\}=\bigcup_{r=1}^{n-1}\{X \cdot Y=0\}^{r} \quad \subset \mathbb{P}\left(\mathcal{S}^{n}\right) \times \mathbb{P}\left(\mathcal{S}^{n}\right)
$$

where $\{X \cdot Y=0\}^{r}$ denotes the subvariety of pairs (X, Y) with $\operatorname{rank}(X) \leq r$ and $\operatorname{rank}(Y) \leq n-r$.

Nie, Ranestad and Sturmfels showed the following decomposition into irreducible components:

$$
\{X \cdot Y=0\}=\bigcup_{r=1}^{n-1}\{X \cdot Y=0\}^{r} \quad \subset \mathbb{P}\left(\mathcal{S}^{n}\right) \times \mathbb{P}\left(\mathcal{S}^{n}\right)
$$

where $\{X \cdot Y=0\}^{r}$ denotes the subvariety of pairs (X, Y) with $\operatorname{rank}(X) \leq r$ and $\operatorname{rank}(Y) \leq n-r$.

Theorem [R., Sturmfels, 2010]:
For a (sufficiently generic) spectrahedron P the algebraic boundary of its dual body P^{Δ} is given by

$$
\partial_{a} P^{\Delta} \subseteq \bigcup_{r \in(\text { Pataki range })}\{X \in \mathcal{L} \mid \operatorname{rank}(X) \leq r\}^{*}
$$

Example: Honest pillow - Dual body

Honest pillow:

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid Q(x, y, z) \succeq 0\right\} \text { with } Q(x, y, z)=\left(\begin{array}{cccc}
1 & x & 0 & x \\
x & 1 & y & 0 \\
0 & y & 1 & z \\
x & 0 & z & 1
\end{array}\right)
$$

Dual pillow:

$$
P^{\Delta}=\left\{(a, b, c) \in \mathbb{R}^{3} \mid a x+b y+c z \leq 1 \text { for all }(x, y, z) \in P\right\}
$$

Honest pillow

Dual pillow

Example: Honest pillow - Faces

Pillow:

- Four 1-dimensional faces,
- Four singular 0-dimensional faces
- Two smooth families of 0-dimensional faces

Dual pillow:

- Four (isolated) faces of dimension 0
- Four 2 dimensional "ovals"
- Two smooth families of 0-dimensional faces

Honest pillow

Dual body

Example: Honest pillow - Algebraic boundary

Two components of $\partial_{a} P^{\Delta}$:

- Dual to the smooth patches of ∂P (with $\operatorname{rank}(Q(v))=3)$:

$$
\left(c_{2}^{2}+2 c_{2} c_{3}+c_{3}^{2}\right) \cdot c_{0}^{2}-c_{1}^{2} c_{2}^{2}-c_{1}^{2} c_{3}^{2}-c_{2}^{4}-2 c_{2}^{2} c_{3}^{2}-2 c_{2} c_{3}^{3}-c_{3}^{4}-2 c_{2}^{3} c_{3}=0
$$

- Dual to the singular points on ∂P (with $\operatorname{rank}(Q(v))=2)$:

$$
\begin{aligned}
& 4\left(c_{0}+\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2}-\frac{\sqrt{2}}{2} c_{3}\right) \cdot\left(c_{0}-\frac{\sqrt{2}}{2} c_{1}-\frac{\sqrt{2}}{2} c_{2}+\frac{\sqrt{2}}{2} c_{3}\right) \\
& \cdot\left(c_{0}-\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2}-\frac{\sqrt{2}}{2} c_{3}\right) \cdot\left(c_{0}+\frac{\sqrt{2}}{2} c_{1}-\frac{\sqrt{2}}{2} c_{2}+\frac{\sqrt{2}}{2} c_{3}\right)=0 .
\end{aligned}
$$

Example: Honest pillow - Optimization

(Linear) Optimization over the honest pillow:

$$
\begin{aligned}
& p^{*}\left(c_{1}, c_{2}, c_{3}\right)=\underset{(x, y, z) \in \mathbb{R}^{3}}{\operatorname{Minimize}} c_{1} x+c_{2} y+c_{3} z \\
& \text { subject to } \quad Q(x, y, z) \succeq 0 \text {. }
\end{aligned}
$$

with associated dual problem:

$$
\begin{aligned}
d^{*}\left(c_{1}, c_{2}, c_{3}\right)= & \underset{c_{0} \in \mathbb{R}}{\operatorname{Maximize}} c_{0} \\
& \text { subject to } \quad \frac{1}{c_{0}} \cdot c \in P^{\Delta} .
\end{aligned}
$$

Example: Honest pillow - Optimization

Optimal solution...

- ...is on the smooth part of P, if:

$$
\left(c_{2}^{2}+2 c_{2} c_{3}+c_{3}^{2}\right) \cdot c_{0}^{2}-c_{1}^{2} c_{2}^{2}-c_{1}^{2} c_{3}^{2}-c_{2}^{4}-2 c_{2}^{2} c_{3}^{2}-2 c_{2} c_{3}^{3}-c_{3}^{4}-2 c_{2}^{3} c_{3}=0
$$

- ...is on a "corner" of P, if:

$$
\begin{aligned}
& 4\left(c_{0}+\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2}-\frac{\sqrt{2}}{2} c_{3}\right) \cdot\left(c_{0}-\frac{\sqrt{2}}{2} c_{1}-\frac{\sqrt{2}}{2} c_{2}+\frac{\sqrt{2}}{2} c_{3}\right) \\
& \cdot\left(c_{0}-\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2}-\frac{\sqrt{2}}{2} c_{3}\right) \cdot\left(c_{0}+\frac{\sqrt{2}}{2} c_{1}-\frac{\sqrt{2}}{2} c_{2}+\frac{\sqrt{2}}{2} c_{3}\right)=0 .
\end{aligned}
$$

Questions?

Thank you very much for your attention!

雷 [P. Rostalski and B. Sturmfels, 2010]

Dualities in convex algebraic geometry.

arXiv:1006:4894.
图 [J. Nie, K. Ranestad and B. Sturmfels, 2010]
The algebraic degree of semidefinite programming, Mathematical Programming 122 (2010) 379-405.
[K. Ranestad and B. Sturmfels, 2010]
The convex hull of a variety, arXiv:1004.3018.

