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Background and setup:

- Gaussian graphical models

- Maximum likelihood estimation
   

Existence of the maximum likelihood estimate (MLE)

“Cone” problem

“Probability” problem
 

ML degree of a graph
 

 Example: 
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-                                     undirected graph with

-                                     covariance matrix on 

-                                     concentration matrix with 

  

  

Gaussian graphical model:
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Concentration matrices:                         Covariance matrices:        
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-                                     undirected graph with

-                                     covariance matrix on 

-                                     concentration matrix with 

  

  

Gaussian graphical model:
      

Data:

-                                                 i.i.d samples from 

-                                                 sample covariance matrix

-                                                 sufficient statistics
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Concentration matrices:                         Covariance matrices:        
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The corresponding Gaussian graphical model consists of multivariate 

Gaussians with concentration matrix of the form

   

     

Given a sample covariance matrix      the sufficient statistics are
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Log-likelihood function:

Maximum likelihood estimationMaximum likelihood estimation

Theorem (regular exponential families):
          

In a Gaussian graphical model the MLEs      and      exist if and only if

   
i.e.       is PD-completable.

Then                  is uniquely determined by

   

Theorem (regular exponential families):
          

In a Gaussian graphical model the MLEs      and      exist if and only if

   
i.e.       is PD-completable.

Then                  is uniquely determined by

   

 



 Concentration matrices:                     Covariance matrices:        
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Cone of concentration matrices:

    

Cone of sufficient statistics:

where                                        

respectively 
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Cones and maximum likelihood estimationCones and maximum likelihood estimation

Theorem (exponential families):
          

The map

is a homeomorphism between        and    
   

The inverse map               takes the sufficient statistics to the MLE of 

the concentration matrix. Here,          is the unique maximizer of the 

determinant over
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Theorem (Sturmfels & U., 2010):
 

      is the convex dual to         Furthermore,        and       are closed 

convex cones which are dual to each other with
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 Concentration matrices:                     Covariance matrices:        
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Given a graph 

Existence of MLE: 2 ProblemsExistence of MLE: 2 Problems

??   Under what conditions on       does the MLE exist?   (i.e. describe      )

 “Cone” problem

 

??   Under what conditions on                                does the MLE exist?

 “Probability” problem



Example:
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Corollary (U.):
 

The MLE exists for       if and only if
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Given a graph 

Existence of MLE: 2 ProblemsExistence of MLE: 2 Problems

??   Under what conditions on       does the MLE exist?

 

??   Under what conditions on                                does the MLE exist?

      And with what probability?



Probability of existenceProbability of existence

Reminder: MLE exists                                         

 

 

      

Example: 

MLE exists 
 

  MLE does not exist

  MLE exists with probability 1
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 Assume:                                have length 1 and           

Note:   Existence of the MLE is invariant under
           

 a) Rescaling:

                                                     where     is diagonal.
     

b) Orthogonal transformation:

                                                                  where     is orthogonal.
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Theorem (U.):
 

The MLE exists on           with probability 1 for             and does not 

exist for             
 

For             let                                  (                                                    ).

The MLE exists if and only if                        lie between     and      or     

                       lie outside     and       This happens with prob.   
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 Problem 2: K2,mProblem 2: K2,m
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The maximum likelihood degree of a statistical model is the 

number of complex solutions to the likelihood equations for generic 

data.        

 Generic data: The number of solutions is a constant for all data, 

except possibly for a lower-dimensional subset of the data space. 

ML-degree of a graphML-degree of a graph
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Click to  add ti t le

Theorem (Sturmfels & U., 2010):
  

     chordal if and only if    
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Conjecture (Drton, Sullivant & Sturmfels, 2009):
  

The ML-degree of an m-cycle         is given by
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Theorem (U.):
  

The ML-degree of the bipartite graph            is given by

 

Theorem (U.):
  

The ML-degree of the bipartite graph            is given by

 



Sturmfels & U.:  Multivariate Gaussians, semidefinite matrix 
completion, and convex algebraic geometry (AISM 62, 2010)

U.: Maximum likelihood estimation in Gaussian graphical models (in 
progress)

Malaspinas & U.: Detecting epistasis via Markov bases 
(arXiv:1006.4929)

Thank you!
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