Multidegree for bifiltered D-modules and hypergeometric systems

Rémi Arcadias
Tokyo Woman's Christian University

Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

JST CREST Conference in Osaka, 2010, 1st of July

Weyl algebra

$$
D=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle
$$

with for any $i, \partial_{i} x_{i}=x_{i} \partial_{i}+1$.

Definition

F-filtration: defined by the weights

x_{1}	\ldots	x_{n}	∂_{1}	\ldots	∂_{n}
0	\ldots	0	1	\ldots	1

$P=\sum_{\alpha, \beta} a_{\alpha, \beta} x^{\alpha} \partial^{\beta}$ belongs to $F_{d}(D)$ iff any $x^{\alpha} \partial^{\beta}$ has weight $\leq d . D=\cup_{d \in \mathbb{N}} F_{d}(D)$.

Definition
V-filtration (along the origin): defined by the weights

x_{1}	\ldots	x_{n}	∂_{1}	\ldots	∂_{n}
-1	\ldots	-1	1	\ldots	1

$D=\cup_{k \in \mathbb{Z}} V_{k}(D)$.

Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

Bifiltered free resolutions of

Bifiltered D-module

Definition

Bifiltration: $F_{d, k}(D)=F_{d}(D) \cap V_{k}(D)$.
For $\mathbf{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$ and $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}^{r}$, $D^{r}[\mathbf{n}][\mathbf{m}]=D^{r}$ with

$$
F_{d, k}\left(D^{r}[\mathbf{n}][\mathbf{m}]\right)=\oplus_{i=1}^{r} F_{d-n_{i}, k-m_{i}}(D) .
$$

Definition

A bifiltered D-module M is a D-module $D^{r}[\mathbf{n}][\mathbf{m}] / N$ with the quotient bifiltration

$$
F_{d, k}(M)=\frac{F_{d, k}\left(D^{r}[\mathbf{n}][\mathbf{m}]\right)+N}{N} .
$$

Bifiltered free resolution

Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

Bifiltered free resolutions of D-modules

$$
\rightarrow F_{d, k}\left(D^{r_{0}}\left[\mathbf{n}^{(0)}\right]\left[\mathbf{m}^{(0)}\right]\right) \rightarrow F_{d, k}(M) \rightarrow 0
$$

How to use the Betti numbers r_{i} and the shifts $\mathbf{n}^{(i)}, \mathbf{m}^{(i)}$?

Example

$D=\mathbb{C}\left[x_{1}, x_{2}\right]\left\langle\partial_{1}, \partial_{2}\right\rangle$
Let $/$ be the ideal generated by $\partial_{1}-\partial_{2}$ and $x_{1} \partial_{1}+x_{2} \partial_{2}$. $M=D / I=M_{A}(0,0)$ with $A=\left(\begin{array}{ll}1 & 1\end{array}\right)$.
Bifiltered free resolution:

$$
0 \rightarrow D^{1}[2][1] \xrightarrow{\phi_{2}} D^{2}[1,1][1,0] \xrightarrow{\phi_{1}} D^{1}[0][0] \rightarrow M \rightarrow 0
$$

with

- $\phi_{1}\left(e_{1}\right)=\partial_{1}-\partial_{2}$
- $\phi_{1}\left(e_{2}\right)=x_{1} \partial_{1}+x_{2} \partial_{2}$
- $\phi_{2}(1)=\left(x_{1} \partial_{1}+x_{2} \partial_{2}\right) e_{1}-\left(\partial_{1}-\partial_{2}\right) e_{2}$

K-polynomial: example

$$
0 \rightarrow D^{1}[2][1] \xrightarrow{\phi_{2}} D^{2}[1,1][1,0] \xrightarrow{\phi_{1}} D^{1}[0][0] \rightarrow M \rightarrow 0
$$

- $K\left(D^{1}[0][0] ; T_{1}, T_{2}\right)=T_{1}^{0} T_{2}^{0}=1$
- $K\left(D^{2}[1,1][1,0] ; T_{1}, T_{2}\right)=T_{1}^{1} T_{2}^{1}+T_{1}^{1} T_{2}^{0}=T_{1} T_{2}+T_{1}$
- $K\left(D^{1}[2][1] ; T_{1}, T_{2}\right)=T_{1}^{2} T_{2}^{1}=T_{1}^{2} T_{2}$
- Then $K\left(M ; T_{1}, T_{2}\right)=1-\left(T_{1} T_{2}+T_{1}\right)+T_{1}^{2} T_{2}$

Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

K-polynomial: definition and invariance

Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University
$0 \rightarrow D^{r_{\delta}}\left[\mathbf{n}^{(\delta)}\right]\left[\mathbf{m}^{(\delta)}\right] \rightarrow \cdots \rightarrow D^{r_{0}}\left[\mathbf{n}^{(0)}\right]\left[\mathbf{m}^{(0)}\right] \rightarrow M \rightarrow 0$

- $K\left(D^{r}[\mathbf{n}][\mathbf{m}] ; T_{1}, T_{2}\right)=\sum_{j} T_{1}^{n_{j}} T_{2}^{m_{j}}$
- $K\left(M ; T_{1}, T_{2}\right)=\sum_{i}(-1)^{i} K\left(D^{r_{i}}\left[\mathbf{n}^{(i)}\right]\left[\mathbf{m}^{(i)}\right] ; T_{1}, T_{2}\right)$

Proposition

$K\left(M ; T_{1}, T_{2}\right) \in \mathbb{Z}\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}\right]$ does not depend on the bifiltered free resolution.
But it depends on the bifiltration, i.e. the presentation of M.

Multidegree: example

$K\left(M ; 1-T_{1}, 1-T_{2}\right) \in \mathbb{Z}\left[\left[T_{1}, T_{2}\right]\right]$.
Example: $K\left(M ; T_{1}, T_{2}\right)=1-\left(T_{1} T_{2}+T_{1}\right)+T_{1}^{2} T_{2}$
$K\left(M ; 1-T_{1}, 1-T_{2}\right)=1-\left(\left(1-T_{1}\right)\left(1-T_{2}\right)+\left(1-T_{1}\right)\right)$
$+\left(\left(1-T_{1}\right)^{2}\left(1-T_{2}\right)\right)$
$=\left(T_{1}^{2}+T_{1} T_{2}\right)-T_{1}^{2} T_{2}$
Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

Multidegree for bifiltered D-modules

Multidegree:

$$
\mathcal{C}\left(M ; T_{1}, T_{2}\right)=T_{1}^{2}+T_{1} T_{2}
$$

It is an element of $\mathbb{Z}\left[T_{1}, T_{2}\right]$, homogeneous of degree 2 .

V-homogenization

Let $P=\sum_{\alpha, \beta} a_{\alpha, \beta} \alpha^{\alpha} \partial^{\beta} \in D$.
Definition (V-homogenization)
$-\operatorname{ord}^{V}(P)=\max _{\alpha, \beta}\left(\sum_{i} \beta_{i}-\sum_{i} \alpha_{i}\right)$

- $H^{V}(P)=\sum_{\alpha, \beta} x^{\alpha} \partial^{\beta} \theta^{\operatorname{ord}^{V}(P)-\left(\sum \beta_{i}-\sum \alpha_{i}\right)} \in D[\theta]$.
- Let I be an ideal of D. Let $H^{V}(I)$ be the ideal of $D[\theta]$ generated by $H^{V}(P), P \in I$.
- If $M=D / I$, then $\mathcal{R}_{V}(M)=D[\theta] / H^{V}(I)$.
F-filtration on $D[\theta]: \theta$ has weight 0 .

\[

\]

Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

Multidegree for bifiltered

Multidegree: definition and invariance

Let $d=\operatorname{codim}\left(\operatorname{gr}^{F}\left(\mathcal{R}_{V}(M)\right)\right)$.

Definition

The multidegree $\mathcal{C}\left(M ; T_{1}, T_{2}\right)$ is the sum of the terms whose degree equals d in the expansion of $K\left(M ; 1-T_{1}, 1-T_{2}\right)$.

Theorem
The multidegree $\mathcal{C}\left(M ; T_{1}, T_{2}\right)$ neither depends on the bifiltered free resolution nor on the bifiltration.
Outline of the proof:

- $\mathcal{C}\left(M ; T_{1}, T_{2}\right)=\mathcal{C}\left(\operatorname{gr}^{F}\left(\mathcal{R}_{V}(M)\right) ; T_{1}, T_{2}\right)$ only depends on the cycle (maximal dimensional associated primes and multiplicities) associated with $\operatorname{gr}^{F}\left(\mathcal{R}_{V}(M)\right)$.
- This cycle does not depend on the bifiltration, using a proof by Laurent [2].

Multidegree for
bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

Hypergeometric systems

Let $A=\left(a_{i, j}\right)$ be a $d \times n$ integer matrix of rank d. Assume

- The columns a_{1}, \ldots, a_{n} generate \mathbb{Z}^{d} over \mathbb{Z}
- a_{1}, \ldots, a_{n} lie in a single halfspace.

Let I_{A} be the ideal of $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$ generated by the elements $\partial^{u}-\partial^{v}$ with $u, v \in \mathbb{N}^{n}$ such that $A u=A v$. Let $\beta_{1}, \ldots, \beta_{d} \in \mathbb{C}$ and $H_{A}(\beta)$ be the ideal of D generated by I_{A} and the elements

$$
\sum_{j} a_{i, j} x_{j} \partial_{j}-\beta_{i},
$$

for $i=1, \ldots, d$.
Hypergeometric system (Gel'fand-Zelevinsky-Kapranov):

$$
M_{A}(\beta)=D / H_{A}(\beta)
$$

Multidegree for
bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

Homogeneous case

Assumption: The columns a_{1}, \ldots, a_{n} lie in a single hyperplane.
$\operatorname{vol}(A)=$ volume of the convex hull in \mathbb{R}^{d} of the set $\left\{0, a_{1}, \ldots, a_{n}\right\}\left(\right.$ with $\left.\operatorname{vol}\left([0,1]^{d}\right)=d!\right)$.

Theorem

If moreover $\mathbb{C}[\partial] / I_{A}$ is Cohen-Macaulay, then for any $\beta \in \mathbb{C}^{d}$ we have

- $\operatorname{codim}\left(\operatorname{gr}^{F}\left(\mathcal{R}_{V}\left(M_{A}(\beta)\right)\right)\right)=n$
- $\mathcal{C}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=\operatorname{vol}(A) \cdot \sum_{j=d}^{n}\binom{n-d}{j-d} T_{1}^{j} T_{2}^{n-j}$.

Multidegree for bifiltered
D-modules and hypergeometric systems

Rémi Arcadias Tokyo Woman's Christian University

Example: Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right)$.
I_{A} is generated by $\partial_{1} \partial_{3}-\partial_{2}^{2}$.
For all β,

$$
\mathcal{C}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=2 T_{1}^{3}+2 T_{1}^{2} T_{2}
$$

Proof of the theorem

bifiltered
D-modules and hypergeometric systems

- $M_{A}(\beta)$ is V-homogeneous, then

$$
\mathcal{R}_{V}\left(M_{A}(\beta)\right)=D[\theta] / H_{A}(\beta)
$$

- Then $\operatorname{codim}\left(\operatorname{gr}^{F}\left(\mathcal{R}_{V} M_{A}(\beta)\right)\right)=n$.
- Let $(A x \xi)_{i}=\sum_{j} a_{i, j} x_{j} \xi_{j} \in \mathbb{C}[x, \xi]=\operatorname{gr}^{F}(D)$. By Saito-Sturmfels-Takayama, $(A x \xi)_{1}, \ldots,(A x \xi)_{d}$ is a regular sequence in $\operatorname{gr}^{F}\left(D / I_{A}\right)=\mathbb{C}[x, \xi] / I_{A}$.
- Then $\operatorname{gr}^{F}\left(\mathcal{R}_{V} M_{A}(\beta)\right)=\mathbb{C}[x, \xi, \theta] /\left(I_{A}+(A x \xi)\right)$.
- Moreover $\mathcal{C}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=\mathcal{C}\left(\mathbb{C}[\xi] / I_{A} ; T_{1}, T_{2}\right) . T_{1}^{d}$.

Rémi Arcadias Tokyo Woman's Christian
University

- $\mathcal{C}\left(\mathbb{C}[\xi] / I_{A} ; T_{1}, T_{2}\right)=\mathcal{C}\left(\mathbb{C}[\xi] / I_{A} ; T\right)_{T=T_{1}+T_{2}}$.
- $\mathcal{C}\left(\mathbb{C}[\xi] / I_{A} ; T\right)=\operatorname{deg}\left(\mathbb{C}[\xi] / I_{A}\right) T^{n-d}$.
- $\operatorname{deg}\left(\mathbb{C}[\xi] / I_{A}\right)=\operatorname{vol}(A)$.
- Finally, $\mathcal{C}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=\operatorname{vol}(A) \cdot\left(T_{1}+T_{2}\right)^{n-d} T_{1}^{d}$.

Homogeneous case: non Cohen-Macaulay example

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 4
\end{array}\right)
$$

I_{A} is generated by $\partial_{2} \partial_{4}^{2}-\partial_{3}, \quad \partial_{1} \partial_{4}-\partial_{2} \partial_{3}, \quad \partial_{1} \partial_{3}^{2}-\partial_{2}^{2} \partial_{4}, \quad \partial_{1}^{2} \partial_{3}-\partial_{2}^{3}$. For $\left(\beta_{1}, \beta_{2}\right) \neq(1,2)$, we have

$$
\mathcal{C}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=4 T_{1}^{4}+8 T_{1}^{3} T_{2}+4 T_{1}^{2} T_{2}^{2}
$$

For $\left(\beta_{1}, \beta_{2}\right)=(1,2)$, we have

$$
\mathcal{C}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=5 T_{1}^{4}+12 T_{1}^{3} T_{2}+10 T_{1}^{2} T_{2}^{2}+4 T_{1} T_{2}^{3}+T_{2}^{4} .
$$

Inhomogeneous case

Let $I \subset \mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]$ be an ideal. $H(I) \subset \mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}, h\right]$ is the F-homogenization of I.
Theorem
Assume that $\mathbb{C}[\partial, h] / H\left(I_{A}\right)$ is Cohen-Macaulay. Then for generic β, we have

- $\operatorname{codim}\left(\operatorname{gr}^{F}\left(\mathcal{R}_{V}\left(M_{A}(\beta)\right)\right)\right)=n$
- $\mathcal{C}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=\operatorname{vol}(A) \cdot \sum_{j=d}^{n}\binom{n-d}{j-d} T_{1}^{j} T_{2}^{n-j}$.

Example:

Let $A=\left(\begin{array}{lll}0 & 1 & 3 \\ 4 & 3 & 2\end{array}\right)$.
I_{A} is generated by $\partial_{1}^{7} \partial_{3}^{4}-\partial_{2}^{12}$.
For any β,

$$
\mathcal{C}_{F, V}\left(M_{A}(\beta) ; T_{1}, T_{2}\right)=12 T_{1}^{3}+12 T_{1}^{2} T_{2} .
$$

References

圊 I. M. Gel'fand, A. V. Zelevinsky, M. M. Kapranov, Hypergeometric functions and toric varieties, Funct. Anal. Appl. 23 (1989), no. 2, 94-106.
Y. Laurent, T. Monteiro Fernandes, Systèmes différentiels Fuchsiens le long d'une sous-variété, Publ. Res. Inst. Math. Sci. 24 (1988), 397-431.
E. Miller, B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics 227, Springer, 2005.
T. Oaku, N. Takayama, Minimal free resolutions of homogenized D-modules, J. Symbolic Comput. 32 (2001), no. 6, 575-595.
(M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, Volume 6, Springer, 2000.

