(Some) computable objects in D-modules theory

Francisco-Jesús Castro-Jiménez^a

Departamento de Álgebra Universidad de Sevilla (Spain)

The Second CREST-SBM International Conference

"Harmony of Gröbner bases and the modern industrial society" Osaka (Japan), June 28-July 2, 2010 ^a Supported by FQM-333, MTM2007-64509 and Feder

Acknowledgments

I am very grateful to my colleagues F.J. Calderón-Moreno, L. Narváez-Macarro and J.M. Ucha-Enríquez for their constant help in my approach to this subject. I am also grateful to my former students J. Gago-Vargas and M.I. Hartillo-Hermoso for their useful comments.

D for differential.

D for differential.

D for any ring of Linear Partial Differential Operators.

D for differential.

D for any ring of Linear Partial Differential Operators.

A *D*-module is a module over the ring *D*. It represents a system of LPDE.

D for differential.

- *D* for any ring of Linear Partial Differential Operators.
 - Theory developed (from 1970) by I.N.
 - Bernstein, M. Kashiwara, T. Kawai,
- B. Malgrange, Z. Mebkhout, D. Quillen, M. Sato and others.

The system of LPDE

$$(1) \begin{cases} (x\frac{\partial}{\partial x} + 1)(u(x,y)) = 0\\ (y\frac{\partial}{\partial y} + 1)(u(x,y)) = 0 \end{cases}$$

The system of LPDE

$$(1) \begin{cases} (x\frac{\partial}{\partial x} + 1)(u(x,y)) = 0\\ (y\frac{\partial}{\partial y} + 1)(u(x,y)) = 0 \end{cases}$$

has no non-zero holomorphic solution (at the origin).

The system of LPDE

$$(1) \begin{cases} (x\frac{\partial}{\partial x} + 1)(u(x,y)) = 0\\ (y\frac{\partial}{\partial y} + 1)(u(x,y)) = 0 \end{cases}$$

But
$$(x\partial_x + 1)(\frac{1}{xy}) = (y\partial_y + 1)(\frac{1}{xy}) = 0$$

The system of LPDE

$$(1) \begin{cases} (x\frac{\partial}{\partial x} + 1)(u(x,y)) = 0\\ (y\frac{\partial}{\partial y} + 1)(u(x,y)) = 0 \end{cases}$$

But
$$(x\partial_x + 1)(\frac{1}{xy}) = (y\partial_y + 1)(\frac{1}{xy}) = 0$$

The meromorphic function $\frac{1}{xy}$ is a solution of the system (1)

The system of LPDE

$$(1) \begin{cases} (x\frac{\partial}{\partial x} + 1)(u(x,y)) = 0\\ (y\frac{\partial}{\partial y} + 1)(u(x,y)) = 0 \end{cases}$$

But
$$(x\partial_x + 1)(\frac{1}{xy}) = (y\partial_y + 1)(\frac{1}{xy}) = 0$$

The meromorphic function $\frac{1}{xy}$ is a solution of the system (1) What does it look like the set of LPDO $Q = Q(x, y, \partial_x, \partial_y)$ such that $Q(\frac{1}{xy}) = 0$?

The system of LPDE

$$(1) \begin{cases} (x\frac{\partial}{\partial x} + 1)(u(x,y)) = 0\\ (y\frac{\partial}{\partial y} + 1)(u(x,y)) = 0 \end{cases}$$

But
$$(x\partial_x + 1)(\frac{1}{xy}) = (y\partial_y + 1)(\frac{1}{xy}) = 0$$

The meromorphic function $\frac{1}{xy}$ is a solution of the system (1) A kind of "inverse problem": The input is the solution $\frac{1}{xy}$ and we want the set of equations $Q(x, y, \partial_x, \partial_y)(u(x, y)) = 0$ having $u(x, y) = \frac{1}{xy}$ as a solution.

 $x = (x_1, \ldots, x_n)$ indeterminates $(n \in \mathbb{Z}_{\geq 1})$ $\mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_n]$ polynomial ring.

$$x = (x_1, \dots, x_n)$$
 indeterminates $(n \in \mathbb{Z}_{\geq 1})$
 $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$ polynomial ring.
 $\partial_i = \frac{\partial}{\partial x_i}, \ \partial = (\partial_1, \dots, \partial_n).$

 $x = (x_1, \dots, x_n)$ indeterminates $(n \in \mathbb{Z}_{\geq 1})$ $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$ polynomial ring. $\partial_i = \frac{\partial}{\partial x_i}, \ \partial = (\partial_1, \dots, \partial_n).$

LPDO $P = \sum_{\beta} p_{\beta}(x) \partial^{\beta}$ (finite sum) $\beta \in \mathbb{N}^{n}, \ p_{\beta}(x) \in \mathbb{C}[x].$

 $x = (x_1, \dots, x_n)$ indeterminates $(n \in \mathbb{Z}_{\geq 1})$ $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$ polynomial ring. $\partial_i = \frac{\partial}{\partial x_i}, \ \partial = (\partial_1, \dots, \partial_n).$

LPDO $P = \sum_{\beta} p_{\beta}(x) \partial^{\beta}$ (finite sum) $\beta \in \mathbb{N}^{n}, \ p_{\beta}(x) \in \mathbb{C}[x].$

$$\partial^{\beta} = \partial_1^{\beta_1} \cdots \partial_n^{\beta_n} = \frac{\partial^{\beta_1 + \cdots + \beta_n}}{\partial x_1^{\beta_1} \cdots \partial x_n^{\beta_n}}$$

 $x = (x_1, \dots, x_n)$ indeterminates $(n \in \mathbb{Z}_{\geq 1})$ $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$ polynomial ring. $\partial_i = \frac{\partial}{\partial x_i}, \ \partial = (\partial_1, \dots, \partial_n).$

LPDO $P = \sum_{\beta} p_{\beta}(x) \partial^{\beta}$ (finite sum) $\beta \in \mathbb{N}^{n}, \ p_{\beta}(x) \in \mathbb{C}[x].$

 $A_n = A_n(\mathbb{C})$ the set of LPDO (with polynomial coefficients).

 $x = (x_1, \dots, x_n)$ indeterminates $(n \in \mathbb{Z}_{\geq 1})$ $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$ polynomial ring. $\partial_i = \frac{\partial}{\partial x_i}, \ \partial = (\partial_1, \dots, \partial_n).$

LPDO $P = \sum_{\beta} p_{\beta}(x) \partial^{\beta}$ (finite sum) $\beta \in \mathbb{N}^{n}, \ p_{\beta}(x) \in \mathbb{C}[x].$

 $A_n = A_n(\mathbb{C})$ the set of LPDO (with polynomial coefficients). LPDO can be added (obvious way) and also multiplied: the product PQ is computed by applying Leibniz's rule:

 $x = (x_1, \dots, x_n)$ indeterminates $(n \in \mathbb{Z}_{\geq 1})$ $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$ polynomial ring. $\partial_i = \frac{\partial}{\partial x_i}, \ \partial = (\partial_1, \dots, \partial_n).$

LPDO $P = \sum_{\beta} p_{\beta}(x) \partial^{\beta}$ (finite sum) $\beta \in \mathbb{N}^{n}, \ p_{\beta}(x) \in \mathbb{C}[x].$

 $A_n = A_n(\mathbb{C})$ the set of LPDO (with polynomial coefficients). LPDO can be added (obvious way) and also multiplied: the product PQ is computed by applying Leibniz's rule:

$$\partial_i f = f \partial_i + \frac{\partial f}{\partial x_i}$$
 (for $f \in \mathbb{C}[x]$).

 $x = (x_1, \dots, x_n)$ indeterminates $(n \in \mathbb{Z}_{\geq 1})$ $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$ polynomial ring. $\partial_i = \frac{\partial}{\partial x_i}, \ \partial = (\partial_1, \dots, \partial_n).$

LPDO $P = \sum_{\beta} p_{\beta}(x) \partial^{\beta}$ (finite sum) $\beta \in \mathbb{N}^{n}, \ p_{\beta}(x) \in \mathbb{C}[x].$

 $A_n = A_n(\mathbb{C})$ the set of LPDO (with polynomial coefficients). LPDO can be added (obvious way) and also multiplied: the product PQ is computed by applying Leibniz's rule:

$$\partial_i f = f \partial_i + \frac{\partial f}{\partial x_i}$$
 (for $f \in \mathbb{C}[x]$).

 A_n is a (non-commutative) ring (the Weyl algebra).

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$ *Compute* the set $\{P \in A_n \mid P(\frac{1}{f}) = 0\}.$

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$ *Compute* the set $\{P \in A_n \mid P(\frac{1}{f}) = 0\}.$ Previous set is a (left) ideal in the ring A_n . It is denoted $Ann(\frac{1}{f})$ the annihilating ideal of $\frac{1}{f}$.

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$ *Compute* the set $\{P \in A_n \mid P(\frac{1}{f}) = 0\}.$ Previous set is a (left) ideal in the ring A_n . It is denoted $Ann(\frac{1}{f})$ the annihilating ideal of $\frac{1}{f}$. (Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_n is finitely generated.

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$ *Compute* the set $\{P \in A_n \mid P(\frac{1}{f}) = 0\}.$ Previous set is a (left) ideal in the ring A_n . It is denoted $Ann(\frac{1}{f})$ the annihilating ideal of $\frac{1}{f}$. (Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_n is finitely generated. (T. Oaku, N. Takayama) Describe an algorithm solving Problem 1.

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$ *Compute* the set $\{P \in A_n \mid P(\frac{1}{f}) = 0\}.$ Previous set is a (left) ideal in the ring A_n . It is denoted $Ann(\frac{1}{f})$ the annihilating ideal of $\frac{1}{f}$. (Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_n is finitely generated. (T. Oaku, N. Takayama) Describe an algorithm solving Problem 1. Input: A non zero polynomial $f \in \mathbb{C}[x]$. Output: A finite generating system for the ideal $Ann(\frac{1}{f})$.

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$ *Compute* the set $\{P \in A_n \mid P(\frac{1}{f}) = 0\}.$ Previous set is a (left) ideal in the ring A_n . It is denoted $Ann(\frac{1}{f})$ the annihilating ideal of $\frac{1}{f}$. (Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_n is finitely generated. (T. Oaku, N. Takayama) Describe an algorithm solving Problem 1. Object $Ann(\frac{1}{f})$ is computable. Oaku-Takayama's algorithm is implemented in Kan/sm1 (risa/asir); Macaulay2 (D-modules.m2); Singular.

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_n . There is a close algorithm by Oaku-Takayama-Walther computing $Ann(\frac{1}{f})$.

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_n . There is a close algorithm by Oaku-Takayama-Walther computing $Ann(\frac{1}{f})$.

As many algorithms in Algebraic Geometry their complexity is double exponential.

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_n . There is a close algorithm by Oaku-Takayama-Walther computing $Ann(\frac{1}{f})$.

As many algorithms in Algebraic Geometry their complexity is double exponential.

No general alternative methods to compute $Ann(\frac{1}{f})$ are known.

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_n . There is a close algorithm by Oaku-Takayama-Walther computing $Ann(\frac{1}{f})$.

As many algorithms in Algebraic Geometry their complexity is double exponential.

No general alternative methods to compute $Ann(\frac{1}{f})$ are known.

Ex.: f = xyz(x+y)(x+z)(y+z)(x+y+z).

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_n . There is a close algorithm by Oaku-Takayama-Walther computing $Ann(\frac{1}{f})$.

As many algorithms in Algebraic Geometry their complexity is double exponential.

No general alternative methods to compute $Ann(\frac{1}{f})$ are known.

Ex.: f = xyz(x+y)(x+z)(y+z)(x+y+z).

Macaulay 2: RatAnn f computes $Ann(\frac{1}{f})$. But for this

example, in my computer, Macaulay2 gives
 *** out of memory, exiting ***.

Nevertheless

Nevertheless, we can prove that $Ann(\frac{1}{f})$ is generated by the three operators P_1, P_2, P_3

Nevertheless

$$P_1 = x\partial_x + y\partial_y + z\partial_z + 7$$

 $P_2 = y(x+y)(y+z)\partial_y - z(x+z)(y+z)\partial_z + (y-z)(x+4y+4z)$

 $P_3 = y(x-y)(x+y)\partial_y + z(x+z)(x+3y+3z)\partial_z + 3x^2 + 5xy - 4y^2 + 8xz + 8yz + 8z^2$

Nevertheless

$$P_1 = x\partial_x + y\partial_y + z\partial_z + 7$$

 $P_2 = y(x+y)(y+z)\partial_y - z(x+z)(y+z)\partial_z + (y-z)(x+4y+4z)$

 $P_{3} = y(x - y)(x + y)\partial_{y} + z(x + z)(x + 3y + 3z)\partial_{z} + 3x^{2} + 5xy - 4y^{2} + 8xz + 8yz + 8z^{2}$

How to prove that?

If $f \in \mathbb{C}$ (and $f \neq 0$) then $Ann(\frac{1}{f}) = A_n(\partial_1, \dots, \partial_n)$.

Assume f is not a constant polynomial.

Assume *P* is a first order operator $P = \sum_{i=1}^{n} p_i(x)\partial_i + p_0(x)$ $p_i(x) \in \mathbb{C}[x].$

Assume *P* is a first order operator $P = \sum_{i=1}^{n} p_i(x)\partial_i + p_0(x)$ $p_i(x) \in \mathbb{C}[x].$

Remark: $P(\frac{1}{f}) = 0$ if and only if $\sum_{i=1}^{n} p_i(x) \frac{\partial f}{\partial x_i} = p_0(x) f$.

Assume *P* is a first order operator $P = \sum_{i=1}^{n} p_i(x)\partial_i + p_0(x)$ $p_i(x) \in \mathbb{C}[x].$

Remark: $P(\frac{1}{f}) = 0$ if and only if $\sum_{i=1}^{n} p_i(x) \frac{\partial f}{\partial x_i} = p_0(x) f$.

(K. Saito): The vector field $\sum p_i(x)\partial_i$ is called *logarithmic* w.r.t. f.

Assume *P* is a first order operator $P = \sum_{i=1}^{n} p_i(x)\partial_i + p_0(x)$ $p_i(x) \in \mathbb{C}[x].$

Remark: $P(\frac{1}{f}) = 0$ if and only if $\sum_{i=1}^{n} p_i(x) \frac{\partial f}{\partial x_i} = p_0(x) f$.

(K. Saito): The vector field $\sum p_i(x)\partial_i$ is called *logarithmic* w.r.t. f.

Ex.: $f\partial_i$ is a logarithmic vector field (for i = 1, ..., n) w.r.t. fand $f\partial_i + \partial_i(f)$ annihilates $\frac{1}{f}$.

(K. Saito): $Der(\log f)$ the set of logarithmic vector field (with respect to f).

(K. Saito): $Der(\log f)$ the set of logarithmic vector field (with respect to f).

 $\delta = \sum_{i} p_{i}(x) \partial_{i} \in Der(\log f) \text{ if and only if}$ $\delta(f) = \sum_{i} p_{i}(x) \partial_{i}(f) = p_{0}(x) f$ for some $p_{0}(x) \in \mathbb{C}[x]$. Notice that $p_{0}(x) = \frac{\delta(f)}{f}$.

(K. Saito): $Der(\log f)$ the set of logarithmic vector field (with respect to f).

 $\delta = \sum_{i} p_{i}(x) \partial_{i} \in Der(\log f) \text{ if and only if}$ $\delta(f) = \sum_{i} p_{i}(x) \partial_{i}(f) = p_{0}(x) f$ for some $p_{0}(x) \in \mathbb{C}[x]$. Notice that $p_{0}(x) = \frac{\delta(f)}{f}$. $\widetilde{Der}(\log f) = \{\delta + \frac{\delta(f)}{f} \mid \delta \in Der(\log f)\}$

(K. Saito): $Der(\log f)$ the set of logarithmic vector field (with respect to f).

 $\delta = \sum_{i} p_{i}(x) \partial_{i} \in Der(\log f) \text{ if and only if}$ $\delta(f) = \sum_{i} p_{i}(x) \partial_{i}(f) = p_{0}(x) f$ for some $p_{0}(x) \in \mathbb{C}[x]$. Notice that $p_{0}(x) = \frac{\delta(f)}{f}$. $\widetilde{Der}(\log f) = \{\delta + \frac{\delta(f)}{f} \mid \delta \in Der(\log f)\}$

Denote $Ann^{(1)}(\frac{1}{f})$ the ideal in A_n generated by LPDO *P* of order 1 and $P(\frac{1}{f}) = 0$.

(K. Saito): $Der(\log f)$ the set of logarithmic vector field (with respect to f).

 $\delta = \sum_{i} p_{i}(x) \partial_{i} \in Der(\log f) \text{ if and only if}$ $\delta(f) = \sum_{i} p_{i}(x) \partial_{i}(f) = p_{0}(x) f$ for some $p_{0}(x) \in \mathbb{C}[x]$. Notice that $p_{0}(x) = \frac{\delta(f)}{f}$. $\widetilde{Der}(\log f) = \{\delta + \frac{\delta(f)}{f} \mid \delta \in Der(\log f)\}$

Denote $Ann^{(1)}(\frac{1}{f})$ the ideal in A_n generated by LPDO P of order 1 and $P(\frac{1}{f}) = 0$. Remark: $Ann^{(1)}(\frac{1}{f}) = A_n \widetilde{Der}(\log f)$.

(K. Saito): $Der(\log f)$ the set of logarithmic vector field (with respect to f).

 $\delta = \sum_{i} p_{i}(x) \partial_{i} \in Der(\log f) \text{ if and only if}$ $\delta(f) = \sum_{i} p_{i}(x) \partial_{i}(f) = p_{0}(x) f$ for some $p_{0}(x) \in \mathbb{C}[x]$. Notice that $p_{0}(x) = \frac{\delta(f)}{f}$. $\widetilde{Der}(\log f) = \{\delta + \frac{\delta(f)}{f} \mid \delta \in Der(\log f)\}$

Denote $Ann^{(1)}(\frac{1}{f})$ the ideal in A_n generated by LPDO P of order 1 and $P(\frac{1}{f}) = 0$. $Ann^{(1)}(\frac{1}{f}) \subset Ann(\frac{1}{f})$

(K. Saito): $Der(\log f)$ the set of logarithmic vector field (with respect to f).

 $\delta = \sum_{i} p_{i}(x) \partial_{i} \in Der(\log f) \text{ if and only if}$ $\delta(f) = \sum_{i} p_{i}(x) \partial_{i}(f) = p_{0}(x) f$ for some $p_{0}(x) \in \mathbb{C}[x]$. Notice that $p_{0}(x) = \frac{\delta(f)}{f}$. $\widetilde{Der}(\log f) = \{\delta + \frac{\delta(f)}{f} \mid \delta \in Der(\log f)\}$

Denote $Ann^{(1)}(\frac{1}{f})$ the ideal in A_n generated by LPDO P of order 1 and $P(\frac{1}{f}) = 0$.

Problem 2. Describe (characterize) the class of nonzero $f \in \mathbb{C}[x]$ such that $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f}).$

Ex.:
$$n = 1, x = x_1$$
.
 $Ann^{(1)}(\frac{1}{x}) = Ann(\frac{1}{x}) = A_1(x\partial_x + 1)$.

Ex.: $n = 2, x = x_1, y = x_2$. $Ann^{(1)}(\frac{1}{xy}) = Ann(\frac{1}{xy}) = A_2(x\partial_x + 1, y\partial_y + 1)$.

Ex.:
$$n = 2$$
, $x = x_1, y = x_2$.
 $Ann^{(1)}(\frac{1}{x-y^2}) = Ann(\frac{1}{x-y^2}) = Ann(\frac{$

Ex.: n = 2, $Ann^{(1)}(\frac{1}{x^4+y^5+xy^4}) \rightleftharpoons Ann(\frac{1}{x^4+y^5+xy^4}).$

 $Der(\log f) \longrightarrow Syz(\partial_1(f), \ldots, \partial_n(f), f)$

$$Der(\log f) \longrightarrow Syz(\partial_1(f), \dots, \partial_n(f), f)$$
$$\delta = \sum_i p_i(x)\partial_i \mapsto (p_1(x), \dots, p_n(x), -\frac{\delta(f)}{f}).$$

$$Der(\log f) \longrightarrow Syz(\partial_1(f), \dots, \partial_n(f), f)$$

$$\delta = \sum_{i} p_i(x) \partial_i \mapsto (p_1(x), \dots, p_n(x), -\frac{\delta(f)}{f}).$$

Previous map is an isomorphism of $\mathbb{C}[x]$ -modules. So, object $Der(\log f)$ is computable.

By using commutative Groebner basis computation in the polynomial ring $\mathbb{C}[x]$.

$$Der(\log f) \longrightarrow Syz(\partial_1(f), \dots, \partial_n(f), f)$$

$$\delta = \sum_{i} p_i(x) \partial_i \mapsto (p_1(x), \dots, p_n(x), -\frac{\delta(f)}{f}).$$

Previous map is an isomorphism of $\mathbb{C}[x]$ -modules. So, object $Der(\log f)$ is computable.

By using commutative Groebner basis computation in the polynomial ring $\mathbb{C}[x]$.

 $Ann^{(1)}(\frac{1}{f})$ is computable (using *only* commutative Groebner bases algorithms; which also have double exponential complexity).

$$Der(\log f) \longrightarrow Syz(\partial_1(f), \dots, \partial_n(f), f)$$

$$\delta = \sum_{i} p_i(x) \partial_i \mapsto (p_1(x), \dots, p_n(x), -\frac{\delta(f)}{f}).$$

Previous map is an isomorphism of $\mathbb{C}[x]$ -modules. So, object $Der(\log f)$ is computable. By using commutative Groebner basis computation in the

By using commutative Groebner basis computation in the polynomial ring $\mathbb{C}[x]$.

In practice $Ann^{(1)}(\frac{1}{f})$ is easier to compute than $Ann(\frac{1}{f})$.

 $Ann^{(k)}(\frac{1}{f})$

$$k \in \mathbb{Z}_{\geq 1}$$
. $Ann^{(k)}(\frac{1}{f})$
ideal in A_n generated by LPDO P such that
 $P(\frac{1}{f}) = 0$ and $ord(P) \leq k$.

 $Ann^{(k)}(\frac{1}{f})$

$$k \in \mathbb{Z}_{\geq 1}$$
. $Ann^{(k)}(\frac{1}{f})$
ideal in A_n generated by LPDO P such that
 $P(\frac{1}{f}) = 0$ and $ord(P) \leq k$.

 $Ann^{(k)}(\frac{1}{f})$ is also computable (using only commutative Groebner basis algorithms).

 $Ann^{(k)}(\frac{1}{f})$

$$k \in \mathbb{Z}_{\geq 1}. \ Ann^{(k)}(\frac{1}{f})$$

ideal in A_n generated by LPDO P such that
 $P(\frac{1}{f}) = 0$ and $ord(P) \leq k$.
 $Ann^{(k)}(\frac{1}{f})$ is also computable (using only commutative
Groebner basis algorithms).
Ex.: $P = \sum_{i \leq j} p_{ij}(x)\partial_i\partial_j + \sum_i p_i(x)\partial_i + p_0(x)$
 $P(\frac{1}{f}) = 0$ if and only if
the coefficients $(p_{ij}(x), p_i(x), p_0(x))$ represent a syzygy
among f^2 and a set of expressions in the partial derivatives
of f up to degree 2.

 $Ann^{(k)}(\frac{1}{f})$

$$k \in \mathbb{Z}_{\geq 1}$$
. $Ann^{(k)}(\frac{1}{f})$
ideal in A_n generated by LPDO P such that
 $P(\frac{1}{f}) = 0$ and $ord(P) \leq k$.

 $Ann^{(k)}(\frac{1}{f})$ is also computable (using only commutative Groebner basis algorithms).

$$Ann^{(1)}(\frac{1}{f}) \subset Ann^{(2)}(\frac{1}{f}) \subset \dots \subset Ann^{(k)}(\frac{1}{f}) \subset \dots \subset Ann(\frac{1}{f}).$$

 $Ann^{(k)}(\frac{1}{f})$

 $k \in \mathbb{Z}_{\geq 1}$. $Ann^{(k)}(\frac{1}{f})$ ideal in A_n generated by LPDO P such that $P(\frac{1}{f}) = 0$ and $ord(P) \leq k$. $Ann^{(k)}(\frac{1}{f})$ is also computable (using only commutative Groebner basis algorithms). (Noetherianity): There exists a minimal integer $k \geq 1$ (k = k(f) depending on f) such that $Ann^{(k)}(\frac{1}{f}) = Ann(\frac{1}{f})$.

 $Ann^{(k)}(\frac{1}{f})$

$$k \in \mathbb{Z}_{\geq 1}$$
. $Ann^{(k)}(\frac{1}{f})$
ideal in A_n generated by LPDO P such that
 $P(\frac{1}{f}) = 0$ and $ord(P) \leq k$.

 $Ann^{(k)}(\frac{1}{f})$ is also computable (using only commutative Groebner basis algorithms).

(Noetherianity): There exists a minimal integer $k \ge 1$ (k = k(f) depending on f) such that $Ann^{(k)}(\frac{1}{f}) = Ann(\frac{1}{f}).$

Problem 3. Describe the behavior of the function $0 \neq f \in \mathbb{C}[x] \mapsto k(f)$.

From now on, we assume f is a reduced nonzero polynomial in $\mathbb{C}[x]$. Ω^p differential p-forms with polynomial coefficients, $p \in \mathbb{N}$.

 $\Omega^p(1/f)$ meromorphic differential *p*-forms with poles along $f = 0, p \in \mathbb{N}$.

 $\Omega^p(1/f)$ meromorphic differential *p*-forms with poles along $f = 0, p \in \mathbb{N}$. (E. Brieskorn) The cohomology of $\Omega^{\bullet}(1/f)$ is computable if *f* is an *arrangement of hyperplanes*.

 $\Omega^p(1/f)$ meromorphic differential *p*-forms with poles along $f = 0, p \in \mathbb{N}$.

(E. Brieskorn) The cohomology of $\Omega^{\bullet}(1/f)$ is computable if f is an *arrangement of hyperplanes*.

(T. Oaku, N.Takayama) For any nonzero polynomial $f \in \mathbb{C}[x]$, the cohomology of $\Omega^{\bullet}(1/f)$ is computable.

 $\Omega^p(1/f) \supset \Omega^p(\log f)$ logarithmic differential *p*-forms (w.r.t. *f*).

 $\Omega^p(1/f) \supset \Omega^p(\log f)$ logarithmic differential *p*-forms (w.r.t. *f*).

(K. Saito): $\omega \in \Omega^p(1/f)$ is said to be logarithmic (w.r.t. f) if $f\omega$ and $fd\omega$ have no poles.

 $\Omega^p(1/f) \supset \Omega^p(\log f)$ logarithmic differential *p*-forms (w.r.t. *f*).

(K. Saito): $\omega \in \Omega^p(1/f)$ is said to be logarithmic (w.r.t. f) if $f\omega$ and $fd\omega$ have no poles.

Ex.: $\frac{dx}{x}$ and $\frac{dy}{y}$ are logarithmic 1-forms (w.r.t. f = xy). $\frac{dx}{x^2}$, $\frac{dx}{y}$ are not.

 $\Omega^p(1/f) \supset \Omega^p(\log f)$ logarithmic differential *p*-forms (w.r.t. *f*).

(K. Saito): $\omega \in \Omega^p(1/f)$ is said to be logarithmic (w.r.t. f) if $f\omega$ and $fd\omega$ have no poles.

The inclusion $i_f : \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a morphism of complexes (both with the exterior derivative).

 $\Omega^p(1/f) \supset \Omega^p(\log f)$ logarithmic differential *p*-forms (w.r.t. *f*).

(K. Saito): $\omega \in \Omega^p(1/f)$ is said to be logarithmic (w.r.t. f) if $f\omega$ and $fd\omega$ have no poles.

The inclusion $i_f : \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a morphism of complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the cohomology of the logarithmic complex $\Omega^{\bullet}(\log f)$ for a given nonzero polynomial f.

 $\Omega^p(1/f) \supset \Omega^p(\log f)$ logarithmic differential *p*-forms (w.r.t. *f*).

(K. Saito): $\omega \in \Omega^p(1/f)$ is said to be logarithmic (w.r.t. f) if $f\omega$ and $fd\omega$ have no poles.

The inclusion $i_f : \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a morphism of complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the cohomology of the logarithmic complex $\Omega^{\bullet}(\log f)$ for a given nonzero polynomial f.

(N. Takayama- F.J.C.J.) Positive solution to Problem 4 if n = 2.

Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero polynomial f such that $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism. **Logarithmic Comparison Theorem**

Problem 5. Describe the class of nonzero polynomial f such that $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism. quasi-isomorphism \equiv induces an isomorphism in cohomology.

Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero polynomial f such that $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism. If so, we say that the Logarithmic Comparison Property (LCP) holds for f (or for f = 0).

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ in and only if $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism.

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ in and only if $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism.

Freeness is computable (related to Quillen-Suslin Th.). Spencer property is computable (with Groebner basis in A_n).

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ in and only if $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism.

The class (Spencer + free) strictly contains

- all non constant f(x, y) (K. Saito; F. Calderón) and
- all free arrangement of hyperplanes in \mathbb{C}^n (for $n \in \mathbb{N}$) (F. Calderón-L. Narváez).

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ in and only if $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism.

The class (Spencer + free) strictly contains

• all non constant f(x, y) (K. Saito; F. Calderón) and • all free arrangement of hyperplanes in \mathbb{C}^n (for $n \in \mathbb{N}$) (F.

Calderón-L. Narváez).

f = xyz(x+y)(x+z)(y+z)(x+y+z) if free and Spencer. f = xyz(x+y+z) is Spencer but not free. $f = (x+yz)(x^4+y^5+xy^4)$ is free but not Spencer (F. Calderón-L. Narváez).

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ in and only if $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism.

The class (Spencer + free) strictly contains

• all non constant f(x, y) (K. Saito; F. Calderón) and • all free arrangement of hyperplanes in \mathbb{C}^n (for $n \in \mathbb{N}$) (F.

Calderón-L. Narváez).

f = xyz(x+y)(x+z)(y+z)(x+y+z) if free and Spencer. f = xyz(x+y+z) is Spencer but not free. $f = (x+yz)(x^4+y^5+xy^4)$ is free but not Spencer (F. Calderón-L. Narváez).

f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+y)(x+z)(y+z)(x+y+z) is Spencer + free

f = xyz(x + y)(x + z)(y + z)(x + y + z)

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$
 is Spencer + free

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$
 is Spencer + free

So
$$Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f}).$$

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$
 is Spencer + free

So
$$Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f}).$$

Compute $Der(\log f)$ via $Syz(f'_x, f'_y, f'_z, f)$ (Groebner basis in $\mathbb{C}[x, y, z]$).

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$
 is Spencer + free

So
$$Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f}).$$

By a computation with Macaulay2, $Der(\log f)$ is generated by $\delta_1 = x\partial_x + y\partial_y + z\partial_z$

$$\delta_2 = y(x+y)(y+z)\partial_y - z(x+z)(y+z)\partial_z$$

 $\delta_3 = y(x-y)(x+y)\partial_y + z(x+z)(x+3y+3z)\partial_z$

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$

$$f = xyz(x+y)(x+z)(y+z)(x+y+z)$$
 is Spencer + free

So
$$Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f}).$$

Then (as announced some slides before) $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f}) \text{ is generated by}$ $P1 = x\partial_x + y\partial_y + z\partial_z + 7$ $P_2 = y(x+y)(y+z)\partial_y - z(x+z)(y+z)\partial_z + (y-z)(x+4y+4z)$ $P_3 = y(x-y)(x+y)\partial_y + z(x+z)(x+3y+3z)\partial_z + 3x^2 + 5xy - 4y^2 + 8xz + 8yz + 8z^2$

Homo sapiens invented the natural numbers (\mathbb{N}) to count things.

When computations became hard to achieve *homo sapiens* invented Mathematics.

Computer Algebra is a powerful tool in Mathematics (and in particular in *D*-modules theory).

Modern Industrial Society needs to do big/heavy computations. In order to simplify them (and essentially –at least in *D*-module theory– all non trivial computation are heavy)

Modern Industrial Society needs to do big/heavy computations. In order to simplify them (and essentially –at least in D-module theory– all non trivial computation are heavy) we must use meaningful and deep mathematical ideas and results.

Modern Industrial Society needs to do big/heavy computations. In order to simplify them (and essentially –at least in D-module theory– all non trivial computation are heavy) Testing equality $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ is a modest and clear example of such tautology.

Thank you very much.

References

References

Additional results

- The following slides give more precise results
- on the subject of the talk.

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^n) if the module $Der(\log f)$ is a free $\mathbb{C}[x]$ -module. If so, we also say that f is free.

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^n) if the module $Der(\log f)$ is a free $\mathbb{C}[x]$ -module. If so, we also say that f is free.

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^n) if the module $Der(\log f)$ is a free $\mathbb{C}[x]$ -module. If so, we also say that f is free. (K. Saito) Any non constant polynomial in two variables f(x, y) is free.

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^n) if the module $Der(\log f)$ is a free $\mathbb{C}[x]$ -module. If so, we also say that f is free. f = xyz(x+y)(x+z)(y+z)(x+y+z) is free.

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^n) if the module $Der(\log f)$ is a free $\mathbb{C}[x]$ -module. If so, we also say that f is free. f = xyz(x + z + z) is not free.

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^n) if the module $Der(\log f)$ is a free $\mathbb{C}[x]$ -module. If so, we also say that f is free. Freeness is computable (K. Saito's criterion + effective Quillen-Suslin).

LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally quasi-homogeneous hypersurface (in \mathbb{C}^n) then f satisfies LCP.

LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally quasi-homogeneous hypersurface (in \mathbb{C}^n) then f satisfies LCP.

So, for this class of f, by using Oaku-Takayama algorithm, $H^p(\Omega^{\bullet}(\log f)) = H^p(\Omega^{\bullet}(1/f))$ is computable for all p.

LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally quasi-homogeneous hypersurface (in \mathbb{C}^n) then f satisfies LCP.

So, for this class of f, by using Oaku-Takayama algorithm, $H^p(\Omega^{\bullet}(\log f)) = H^p(\Omega^{\bullet}(1/f))$ is computable for all p. So, for

this class of f, we have a positive solution of Problem 4 (the cohomology of $\Omega^{\bullet}(\log f)$ is computable)

Free + Locally Quasi-homogeneous?

How big is the class $\{f \in \mathbb{C}[x] \mid \text{free} + \text{locally quasi-homogeneous} \}$?

Free + Locally Quasi-homogeneous?

How big is the class $\{f \in \mathbb{C}[x] \mid \text{free} + \text{locally quasi-homogeneous} \}$? Previous

class strictly includes: a) all the free hyperplane arrangements.

b) all locally quasi-homogeneous plane curves f(x, y) = 0.

LCT for curves

(F.J. Calderón, L. Narváez, D. Mond, F.J.C.J.) If f(x, y) = 0 is a (reduced) plane curve then f satisfies LCP if and only if and all its singularities are quasi-homogeneous.

LCT for curves

(F.J. Calderón, L. Narváez, D. Mond, F.J.C.J.) If f(x, y) = 0 is a (reduced) plane curve then f satisfies LCP if and only if and all its singularities are quasi-homogeneous. $f = x^4 + y^5 + xy^4 = 0$ has a non quasi-homogeneous singularity at the origin. Since f is free then f does not satisfy LCP. Since f is Spencer $Ann^{(1)}(\frac{1}{f}) \subsetneqq Ann(\frac{1}{f})$.

Torelli's conjecture

Conjecture. For any nonzero polynomial $f \in \mathbb{C}[x]$, $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ if and only if $i_f : \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism.

Torelli's conjecture

Conjecture. For any nonzero polynomial $f \in \mathbb{C}[x]$, $Ann^{(1)}(\frac{1}{f}) = Ann(\frac{1}{f})$ if and only if $i_f: \Omega^{\bullet}(\log f) \to \Omega^{\bullet}(1/f)$ is a quasi-isomorphism. (J.M. Ucha-F.J.C.J.) If $f \in \mathbb{C}[x]$ is (Spencer + free) then previous conjecture is satisfied.