
(Some) computable objects in
D-modules theory

Francisco-Jesús Castro-Jiméneza

Departamento de Álgebra

Universidad de Sevilla (Spain)

The Second CREST-SBM International Conference

”Harmony of Gröbner bases and the modern industrial society”

Osaka (Japan), June 28-July 2, 2010
a Supported by FQM-333, MTM2007-64509 and Feder

(Some) computable objects in D-modules theory – p. 1/27

Acknowledgments

I am very grateful to my colleagues F.J.

Calderón-Moreno, L. Narváez-Macarro

and J.M. Ucha-Enríquez for their constant

help in my approach to this subject. I am

also grateful to my former students J.

Gago-Vargas and M.I. Hartillo-Hermoso

for their useful comments.

(Some) computable objects in D-modules theory – p. 2/27

D-modules theory?

(Some) computable objects in D-modules theory – p. 3/27

D-modules theory?

D for differential.

(Some) computable objects in D-modules theory – p. 3/27

D-modules theory?

D for differential.

D for any ring of Linear Partial Differential

Operators.

(Some) computable objects in D-modules theory – p. 3/27

D-modules theory?

D for differential.

D for any ring of Linear Partial Differential

Operators.

A D–module is a module over the ring D.

It represents a system of LPDE.

(Some) computable objects in D-modules theory – p. 3/27

D-modules theory?

D for differential.

D for any ring of Linear Partial Differential

Operators.

Theory developed (from 1970) by I.N.

Bernstein, M. Kashiwara, T. Kawai,

B. Malgrange, Z. Mebkhout, D. Quillen, M.

Sato and others.

(Some) computable objects in D-modules theory – p. 3/27

Linear Partial Differential Equations

(Some) computable objects in D-modules theory – p. 4/27

Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

(Some) computable objects in D-modules theory – p. 4/27

Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

has no non-zero holomorphic solution (at the origin).

(Some) computable objects in D-modules theory – p. 4/27

Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)(1
xy) = (y∂y + 1)(1

xy) = 0

(Some) computable objects in D-modules theory – p. 4/27

Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)(1
xy) = (y∂y + 1)(1

xy) = 0

The meromorphic function 1
xy is a solution of the system (1)

(Some) computable objects in D-modules theory – p. 4/27

Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)(1
xy) = (y∂y + 1)(1

xy) = 0

The meromorphic function 1
xy is a solution of the system (1)

What does it look like the set of LPDO Q = Q(x, y, ∂x, ∂y)

such that Q(1
xy
) = 0?

(Some) computable objects in D-modules theory – p. 4/27

Linear Partial Differential Equations

The system of LPDE

(1)

{
(x ∂

∂x + 1)(u(x, y)) = 0

(y ∂
∂y

+ 1)(u(x, y)) = 0

But (x∂x + 1)(1
xy) = (y∂y + 1)(1

xy) = 0

The meromorphic function 1
xy is a solution of the system (1)

A kind of “inverse problem": The input is the solution 1
xy

and
we want the set of equations Q(x, y, ∂x, ∂y)(u(x, y)) = 0

having u(x, y) = 1
xy as a solution.

(Some) computable objects in D-modules theory – p. 4/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

∂β = ∂β1

1 · · · ∂βn
n = ∂β1+···+βn

∂x
β1
1 ···∂x

βn
n

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).
LPDO can be added (obvious way) and also multiplied:
the product PQ is computed by applying Leibniz’s rule:

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).
LPDO can be added (obvious way) and also multiplied:
the product PQ is computed by applying Leibniz’s rule:

∂if = f∂i +
∂f
∂xi

(for f ∈ C[x]).

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

x = (x1, . . . , xn) indeterminates (n ∈ Z≥1)
C[x] = C[x1, . . . , xn] polynomial ring.

∂i =
∂
∂xi

, ∂ = (∂1, . . . , ∂n).

LPDO P =
∑

β pβ(x)∂
β (finite sum)

β ∈ Nn, pβ(x) ∈ C[x].

An = An(C) the set of LPDO (with polynomial coefficients).
LPDO can be added (obvious way) and also multiplied:
the product PQ is computed by applying Leibniz’s rule:

∂if = f∂i +
∂f
∂xi

(for f ∈ C[x]).

An is a (non-commutative) ring (the Weyl algebra).

(Some) computable objects in D-modules theory – p. 5/27

Problem setting: algebra tools

(Some) computable objects in D-modules theory – p. 6/27

Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P (1f) = 0}.

(Some) computable objects in D-modules theory – p. 6/27

Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P (1f) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann(1

f
)

the annihilating ideal of 1
f .

(Some) computable objects in D-modules theory – p. 6/27

Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P (1f) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann(1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.

(Some) computable objects in D-modules theory – p. 6/27

Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P (1f) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann(1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.

(T. Oaku, N. Takayama) Describe an algorithm solving
Problem 1.

(Some) computable objects in D-modules theory – p. 6/27

Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P (1f) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann(1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.

(T. Oaku, N. Takayama) Describe an algorithm solving
Problem 1.

Input: A non zero polynomial f ∈ C[x].
Output: A finite generating system for the ideal Ann(1

f
).

(Some) computable objects in D-modules theory – p. 6/27

Problem setting: algebra tools

Problem 1. Given 0 6= f ∈ C[x]
Compute the set

{P ∈ An |P (1f) = 0}.

Previous set is a (left) ideal in the ring An.
It is denoted Ann(1

f
)

the annihilating ideal of 1
f .

(Noetherianity: Hilbert’s basis Th.) Any (left) ideal in An is
finitely generated.

(T. Oaku, N. Takayama) Describe an algorithm solving
Problem 1.

Object Ann(1f) is computable.
Oaku-Takayama’s algorithm is implemented in

Kan/sm1 (risa/asir); Macaulay2 (D-modules.m2);
Singular.

(Some) computable objects in D-modules theory – p. 6/27

Groebner bases inAn

(Some) computable objects in D-modules theory – p. 7/27

Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann(1f).

(Some) computable objects in D-modules theory – p. 7/27

Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann(1f).

As many algorithms in Algebraic Geometry their complexity
is double exponential.

(Some) computable objects in D-modules theory – p. 7/27

Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann(1f).

As many algorithms in Algebraic Geometry their complexity
is double exponential.

No general alternative methods to compute Ann(1
f
) are

known.

(Some) computable objects in D-modules theory – p. 7/27

Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann(1f).

As many algorithms in Algebraic Geometry their complexity
is double exponential.

No general alternative methods to compute Ann(1
f
) are

known.
Ex.: f = xyz(x+ y)(x+ z)(y + z)(x+ y + z).

(Some) computable objects in D-modules theory – p. 7/27

Groebner bases inAn

Oaku-Takayama’s algorithm uses Groebner bases and
Buchberger algorithm in the ring of LPDO An.

There is a close algorithm by Oaku-Takayama-Walther
computing Ann(1f).

As many algorithms in Algebraic Geometry their complexity
is double exponential.

No general alternative methods to compute Ann(1
f
) are

known.
Ex.: f = xyz(x+ y)(x+ z)(y + z)(x+ y + z).

Macaulay 2: RatAnn f computes Ann(1f). But for this
example, in my computer, Macaulay2 gives
*** out of memory, exiting ***.

(Some) computable objects in D-modules theory – p. 7/27

Nevertheless

Nevertheless, we can prove that Ann(1
f
) is generated by the

three operators
P1, P2, P3

(Some) computable objects in D-modules theory – p. 8/27

Nevertheless

P1 = x∂x + y∂y + z∂z + 7

P2 = y(x+ y)(y+ z)∂y − z(x+ z)(y+ z)∂z +(y− z)(x+4y+4z)

P3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y+ 3z)∂z + 3x2 + 5xy−

4y2 + 8xz + 8yz + 8z2

(Some) computable objects in D-modules theory – p. 8/27

Nevertheless

P1 = x∂x + y∂y + z∂z + 7

P2 = y(x+ y)(y+ z)∂y − z(x+ z)(y+ z)∂z +(y− z)(x+4y+4z)

P3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y+ 3z)∂z + 3x2 + 5xy−

4y2 + 8xz + 8yz + 8z2

How to prove that?

(Some) computable objects in D-modules theory – p. 8/27

First step toAnn(1f): order 1 operators

(Some) computable objects in D-modules theory – p. 9/27

First step toAnn(1f): order 1 operators

If f ∈ C (and f 6= 0) then Ann(1
f
) = An(∂1, . . . , ∂n).

(Some) computable objects in D-modules theory – p. 9/27

First step toAnn(1f): order 1 operators

Assume f is not a constant polynomial.

(Some) computable objects in D-modules theory – p. 9/27

First step toAnn(1f): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].

(Some) computable objects in D-modules theory – p. 9/27

First step toAnn(1f): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].

Remark: P (1f) = 0 if and only if
∑n

i=1 pi(x)
∂f
∂xi

= p0(x)f .

(Some) computable objects in D-modules theory – p. 9/27

First step toAnn(1f): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].

Remark: P (1f) = 0 if and only if
∑n

i=1 pi(x)
∂f
∂xi

= p0(x)f .

(K. Saito): The vector field
∑

pi(x)∂i is called logarithmic
w.r.t. f .

(Some) computable objects in D-modules theory – p. 9/27

First step toAnn(1f): order 1 operators

Assume P is a first order operator
P =

∑n
i=1 pi(x)∂i + p0(x)

pi(x) ∈ C[x].

Remark: P (1f) = 0 if and only if
∑n

i=1 pi(x)
∂f
∂xi

= p0(x)f .

(K. Saito): The vector field
∑

pi(x)∂i is called logarithmic
w.r.t. f .

Ex.: f∂i is a logarithmic vector field (for i = 1, . . . , n) w.r.t. f
and f∂i + ∂i(f) annihilates 1

f .

(Some) computable objects in D-modules theory – p. 9/27

Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f).

(Some) computable objects in D-modules theory – p. 10/27

Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

(Some) computable objects in D-modules theory – p. 10/27

Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

(Some) computable objects in D-modules theory – p. 10/27

Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)(1f) the ideal in An generated by LPDO P of

order 1 and P (1
f
) = 0.

(Some) computable objects in D-modules theory – p. 10/27

Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)(1f) the ideal in An generated by LPDO P of

order 1 and P (1
f
) = 0.

Remark: Ann(1)(1f) = AnD̃er(log f).

(Some) computable objects in D-modules theory – p. 10/27

Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)(1f) the ideal in An generated by LPDO P of

order 1 and P (1
f
) = 0.

Ann(1)(1f) ⊂ Ann(1f)

(Some) computable objects in D-modules theory – p. 10/27

Logarithmic vector fields

(K. Saito): Der(log f) the set of logarithmic vector field
(with respect to f).

δ =
∑

i pi(x)∂i ∈ Der(log f) if and only if
δ(f) =

∑
i pi(x)∂i(f) = p0(x)f

for some p0(x) ∈ C[x].

Notice that p0(x) =
δ(f)
f .

D̃er(log f) = {δ + δ(f)
f

| δ ∈ Der(log f)}

Denote Ann(1)(1f) the ideal in An generated by LPDO P of

order 1 and P (1
f
) = 0.

Problem 2. Describe (characterize) the class of nonzero
f ∈ C[x] such that

Ann(1)(1f) = Ann(1f).

(Some) computable objects in D-modules theory – p. 10/27

First examples

Ex.: n = 1, x = x1.

Ann(1)(1x) = Ann(1x) = A1(x∂x + 1).

(Some) computable objects in D-modules theory – p. 11/27

First examples

Ex.: n = 2, x = x1, y = x2.

Ann(1)(1
xy) = Ann(1

xy) = A2(x∂x+1, y∂y +1).

(Some) computable objects in D-modules theory – p. 11/27

First examples

Ex.: n = 2, x = x1, y = x2.

Ann(1)(1
x−y2

) = Ann(1
x−y2

) =

A2(2y∂x + ∂y, (x− y2)∂x).

(Some) computable objects in D-modules theory – p. 11/27

First examples

Ex.: n = 2,

Ann(1)(1
x4+y5+xy4

) & Ann(1
x4+y5+xy4

).

(Some) computable objects in D-modules theory – p. 11/27

Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

(Some) computable objects in D-modules theory – p. 12/27

Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f).

(Some) computable objects in D-modules theory – p. 12/27

Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f).

Previous map is an isomorphism of C[x]–modules. So,
object Der(log f) is computable.

By using commutative Groebner basis computation in the
polynomial ring C[x].

(Some) computable objects in D-modules theory – p. 12/27

Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f).

Previous map is an isomorphism of C[x]–modules. So,
object Der(log f) is computable.

By using commutative Groebner basis computation in the
polynomial ring C[x].

Ann(1)(1f) is computable (using only commutative Groebner
bases algorithms; which also have double exponential

complexity).

(Some) computable objects in D-modules theory – p. 12/27

Der(log f) and syzygies

Der(log f) −→ Syz(∂1(f), . . . , ∂n(f), f)

δ =
∑

i pi(x)∂i 7→ (p1(x), . . . , pn(x),−
δ(f)
f).

Previous map is an isomorphism of C[x]–modules. So,
object Der(log f) is computable.

By using commutative Groebner basis computation in the
polynomial ring C[x].

In practice Ann(1)(1f) is easier to compute than Ann(1f).

(Some) computable objects in D-modules theory – p. 12/27

Ann(k)(1
f
)

(Some) computable objects in D-modules theory – p. 13/27

Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)(1f)
ideal in An generated by LPDO P such that

P (1f) = 0 and ord(P) ≤ k.

(Some) computable objects in D-modules theory – p. 13/27

Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)(1f)
ideal in An generated by LPDO P such that

P (1f) = 0 and ord(P) ≤ k.

Ann(k)(1f) is also computable (using only commutative
Groebner basis algorithms).

(Some) computable objects in D-modules theory – p. 13/27

Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)(1f)
ideal in An generated by LPDO P such that

P (1f) = 0 and ord(P) ≤ k.

Ann(k)(1f) is also computable (using only commutative
Groebner basis algorithms).

Ex.: P =
∑

i≤j pij(x)∂i∂j +
∑

i pi(x)∂i + p0(x)

P (1
f
) = 0 if and only if

the coefficients (pij(x), pi(x), p0(x)) represent a syzygy
among f2 and a set of expressions in the partial derivatives

of f up to degree 2.

(Some) computable objects in D-modules theory – p. 13/27

Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)(1f)
ideal in An generated by LPDO P such that

P (1f) = 0 and ord(P) ≤ k.

Ann(k)(1f) is also computable (using only commutative
Groebner basis algorithms).

Ann(1)(1
f
) ⊂ Ann(2)(1

f
) ⊂ · · · ⊂ Ann(k)(1

f
) ⊂ · · · ⊂ Ann(1

f
).

(Some) computable objects in D-modules theory – p. 13/27

Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)(1f)
ideal in An generated by LPDO P such that

P (1f) = 0 and ord(P) ≤ k.

Ann(k)(1f) is also computable (using only commutative
Groebner basis algorithms).

(Noetherianity): There exists a minimal integer k ≥ 1
(k = k(f) depending on f) such that

Ann(k)(1f) = Ann(1f).

(Some) computable objects in D-modules theory – p. 13/27

Ann(k)(1
f
)

k ∈ Z≥1. Ann(k)(1f)
ideal in An generated by LPDO P such that

P (1f) = 0 and ord(P) ≤ k.

Ann(k)(1f) is also computable (using only commutative
Groebner basis algorithms).

(Noetherianity): There exists a minimal integer k ≥ 1
(k = k(f) depending on f) such that

Ann(k)(1f) = Ann(1f).

Problem 3. Describe the behavior of the function
0 6= f ∈ C[x] 7→ k(f).

(Some) computable objects in D-modules theory – p. 13/27

Singularities Theory tools

From now on, we assume f is a reduced

nonzero polynomial in C[x].

Ωp differential p-forms with polynomial

coefficients, p ∈ N.

(Some) computable objects in D-modules theory – p. 14/27

Singularities Theory tools

Ωp(1/f) meromorphic differential p-forms

with poles along f = 0, p ∈ N.

(Some) computable objects in D-modules theory – p. 14/27

Singularities Theory tools

Ωp(1/f) meromorphic differential p-forms

with poles along f = 0, p ∈ N.

(E. Brieskorn) The cohomology of Ω•(1/f)

is computable if f is an arrangement of

hyperplanes.

(Some) computable objects in D-modules theory – p. 14/27

Singularities Theory tools

Ωp(1/f) meromorphic differential p-forms

with poles along f = 0, p ∈ N.

(E. Brieskorn) The cohomology of Ω•(1/f)

is computable if f is an arrangement of

hyperplanes.

(T. Oaku, N.Takayama) For any nonzero

polynomial f ∈ C[x], the cohomology of

Ω•(1/f) is computable.

(Some) computable objects in D-modules theory – p. 14/27

Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f).

(Some) computable objects in D-modules theory – p. 15/27

Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f) if
fω and fdω have no poles.

(Some) computable objects in D-modules theory – p. 15/27

Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f) if
fω and fdω have no poles.

Ex.: dx
x and dy

y are logarithmic 1-forms (w.r.t. f = xy).
dx
x2 , dx

y are not.

(Some) computable objects in D-modules theory – p. 15/27

Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f) if
fω and fdω have no poles.

The inclusion if : Ω•(log f) → Ω•(1/f) is a morphism of
complexes (both with the exterior derivative).

(Some) computable objects in D-modules theory – p. 15/27

Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f) if
fω and fdω have no poles.

The inclusion if : Ω•(log f) → Ω•(1/f) is a morphism of
complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the
cohomology of the logarithmic complex Ω•(log f) for a given

nonzero polynomial f .

(Some) computable objects in D-modules theory – p. 15/27

Singularities Theory tools

Ωp(1/f) ⊃ Ωp(log f) logarithmic differential p-forms (w.r.t. f).

(K. Saito): ω ∈ Ωp(1/f) is said to be logarithmic (w.r.t. f) if
fω and fdω have no poles.

The inclusion if : Ω•(log f) → Ω•(1/f) is a morphism of
complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the
cohomology of the logarithmic complex Ω•(log f) for a given

nonzero polynomial f .

(N. Takayama- F.J.C.J.) Positive solution to Problem 4 if
n = 2.

(Some) computable objects in D-modules theory – p. 15/27

Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

polynomial f such that

if : Ω•(log f) → Ω•(1/f)

is a quasi-isomorphism.

(Some) computable objects in D-modules theory – p. 16/27

Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

polynomial f such that

if : Ω•(log f) → Ω•(1/f)

is a quasi-isomorphism.

quasi-isomorphism ≡ induces an

isomorphism in cohomology.

(Some) computable objects in D-modules theory – p. 16/27

Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

polynomial f such that

if : Ω•(log f) → Ω•(1/f)

is a quasi-isomorphism.

If so, we say that the Logarithmic

Comparison Property (LCP) holds for f (or

for f = 0).

(Some) computable objects in D-modules theory – p. 16/27

Ann(1f) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)(1f) = Ann(1f) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

(Some) computable objects in D-modules theory – p. 17/27

Ann(1f) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)(1f) = Ann(1f) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

Freeness is computable (related to Quillen-Suslin Th.).
Spencer property is computable (with Groebner basis in

An).

(Some) computable objects in D-modules theory – p. 17/27

Ann(1f) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)(1f) = Ann(1f) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

The class (Spencer + free) strictly contains
• all non constant f(x, y) (K. Saito; F. Calderón) and
• all free arrangement of hyperplanes in Cn (for n ∈ N) (F.
Calderón-L. Narváez).

(Some) computable objects in D-modules theory – p. 17/27

Ann(1f) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)(1f) = Ann(1f) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

The class (Spencer + free) strictly contains
• all non constant f(x, y) (K. Saito; F. Calderón) and
• all free arrangement of hyperplanes in Cn (for n ∈ N) (F.
Calderón-L. Narváez).

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) if free and Spencer.
f = xyz(x+ y + z) is Spencer but not free.

f = (x+ yz)(x4 + y5 + xy4) is free but not Spencer (F.
Calderón-L. Narváez).

(Some) computable objects in D-modules theory – p. 17/27

Ann(1f) and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
Ann(1)(1f) = Ann(1f) in and only if

if : Ω•(log f) → Ω•(1/f) is a quasi-isomorphism.

The class (Spencer + free) strictly contains
• all non constant f(x, y) (K. Saito; F. Calderón) and
• all free arrangement of hyperplanes in Cn (for n ∈ N) (F.
Calderón-L. Narváez).

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) if free and Spencer.
f = xyz(x+ y + z) is Spencer but not free.

f = (x+ yz)(x4 + y5 + xy4) is free but not Spencer (F.
Calderón-L. Narváez).

(Some) computable objects in D-modules theory – p. 17/27

f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

(Some) computable objects in D-modules theory – p. 18/27

f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

(Some) computable objects in D-modules theory – p. 18/27

f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)(1f) = Ann(1f).

(Some) computable objects in D-modules theory – p. 18/27

f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)(1f) = Ann(1f).

Compute Der(log f) via Syz(f ′x, f
′
y, f

′
z, f) (Groebner basis in

C[x, y, z]).

(Some) computable objects in D-modules theory – p. 18/27

f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)(1f) = Ann(1f).

By a computation with Macaulay2, Der(log f) is generated
by δ1 = x∂x + y∂y + z∂z

δ2 = y(x+ y)(y + z)∂y − z(x+ z)(y + z)∂z

δ3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y + 3z)∂z

(Some) computable objects in D-modules theory – p. 18/27

f = xyz(x + y)(x + z)(y + z)(x + y + z)

f = xyz(x+ y)(x+ z)(y + z)(x+ y + z) is Spencer + free

Moreover, if : Ω•(log f)
q.iso.
→ Ω•(1/f)

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

So Ann(1)(1f) = Ann(1f).

Then (as announced some slides before)
Ann(1)(1f) = Ann(1f) is generated by

P1 = x∂x + y∂y + z∂z + 7
P2 = y(x+ y)(y+ z)∂y − z(x+ z)(y+ z)∂z +(y− z)(x+4y+4z)

P3 = y(x− y)(x+ y)∂y + z(x+ z)(x+ 3y+ 3z)∂z + 3x2 + 5xy−

4y2 + 8xz + 8yz + 8z2

(Some) computable objects in D-modules theory – p. 18/27

A (personal) tautology

Homo sapiens invented the natural

numbers (N) to count things.

(Some) computable objects in D-modules theory – p. 19/27

A (personal) tautology

When computations became hard to

achieve homo sapiens invented

Mathematics.

Computer Algebra is a powerful tool in

Mathematics (and in particular in

D-modules theory).

(Some) computable objects in D-modules theory – p. 19/27

A (personal) tautology

Modern Industrial Society needs to do

big/heavy computations. In order to

simplify them (and essentially –at least in

D-module theory– all non trivial

computation are heavy)

(Some) computable objects in D-modules theory – p. 19/27

A (personal) tautology

Modern Industrial Society needs to do

big/heavy computations. In order to

simplify them (and essentially –at least in

D-module theory– all non trivial

computation are heavy)

we must use meaningful and deep

mathematical ideas and results.

(Some) computable objects in D-modules theory – p. 19/27

A (personal) tautology

Modern Industrial Society needs to do

big/heavy computations. In order to

simplify them (and essentially –at least in

D-module theory– all non trivial

computation are heavy)

Testing equality Ann(1)(1f) = Ann(1f) is a

modest and clear example of such

tautology.

(Some) computable objects in D-modules theory – p. 19/27

Thank you very much.

(Some) computable objects in D-modules theory – p. 20/27

References

References

(Some) computable objects in D-modules theory – p. 21/27

Additional results

The following slides give more precise

results

on the subject of the talk.

(Some) computable objects in D-modules theory – p. 22/27

Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f) is a free C[x]–module.

If so, we also say that f is free.

(Some) computable objects in D-modules theory – p. 23/27

Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f) is a free C[x]–module.

If so, we also say that f is free.

(Some) computable objects in D-modules theory – p. 23/27

Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f) is a free C[x]–module.

If so, we also say that f is free.

(K. Saito) Any non constant polynomial in

two variables f (x, y) is free.

(Some) computable objects in D-modules theory – p. 23/27

Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f) is a free C[x]–module.

If so, we also say that f is free.

f = xyz(x + y)(x + z)(y + z)(x + y + z) is

free.

(Some) computable objects in D-modules theory – p. 23/27

Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f) is a free C[x]–module.

If so, we also say that f is free.

f = xyz(x + z + z) is not free.

(Some) computable objects in D-modules theory – p. 23/27

Free (hypersurfaces)

(K. Saito) f ∈ C[x] (non constant) defines

a free hypersurface (in Cn) if the module

Der(log f) is a free C[x]–module.

If so, we also say that f is free.

Freeness is computable (K. Saito’s

criterion + effective Quillen-Suslin).

(Some) computable objects in D-modules theory – p. 23/27

LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally
quasi-homogeneous hypersurface (in Cn) then f satisfies

LCP.

(Some) computable objects in D-modules theory – p. 24/27

LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally
quasi-homogeneous hypersurface (in Cn) then f satisfies

LCP.

So, for this class of f , by using Oaku-Takayama algorithm,
Hp(Ω•(log f)) = Hp(Ω•(1/f)) is computable for all p.

(Some) computable objects in D-modules theory – p. 24/27

LCT

(L. Narváez, D. Mond, F.J.C.J.) If f = 0 is a free and locally
quasi-homogeneous hypersurface (in Cn) then f satisfies

LCP.

So, for this class of f , by using Oaku-Takayama algorithm,
Hp(Ω•(log f)) = Hp(Ω•(1/f)) is computable for all p. So, for

this class of f , we have a positive solution of Problem 4
(the cohomology of Ω•(log f) is computable)

(Some) computable objects in D-modules theory – p. 24/27

Free + Locally Quasi-homogeneous?

How big is the class
{f ∈ C[x] | free + locally quasi-homogeneous }?

(Some) computable objects in D-modules theory – p. 25/27

Free + Locally Quasi-homogeneous?

How big is the class
{f ∈ C[x] | free + locally quasi-homogeneous }? Previous

class strictly includes: a) all the free hyperplane
arrangements.
b) all locally quasi-homogeneous plane curves f(x, y) = 0.

(Some) computable objects in D-modules theory – p. 25/27

LCT for curves

(F.J. Calderón, L. Narváez, D. Mond,

F.J.C.J.) If f (x, y) = 0 is a (reduced) plane

curve then f satisfies LCP if and only if

and all its singularities are

quasi-homogeneous.

(Some) computable objects in D-modules theory – p. 26/27

LCT for curves

(F.J. Calderón, L. Narváez, D. Mond,

F.J.C.J.) If f (x, y) = 0 is a (reduced) plane

curve then f satisfies LCP if and only if

and all its singularities are

quasi-homogeneous.
f = x4 + y5 + xy4 = 0 has a non

quasi-homogeneous singularity at the origin. Since

f is free then f does not satisfy LCP. Since f is

Spencer Ann(1)(1
f
) $ Ann(1

f
).

(Some) computable objects in D-modules theory – p. 26/27

Torelli’s conjecture

Conjecture. For any nonzero polynomial

f ∈ C[x], Ann(1)(1f) = Ann(1f) if and only if

if : Ω•(log f) → Ω•(1/f) is a

quasi-isomorphism.

(Some) computable objects in D-modules theory – p. 27/27

Torelli’s conjecture

Conjecture. For any nonzero polynomial

f ∈ C[x], Ann(1)(1f) = Ann(1f) if and only if

if : Ω•(log f) → Ω•(1/f) is a

quasi-isomorphism.

(J.M. Ucha-F.J.C.J.) If f ∈ C[x] is (Spencer

+ free) then previous conjecture is

satisfied.

(Some) computable objects in D-modules theory – p. 27/27

	Acknowledgments
	D-modules theory?
	D-modules theory?
	D-modules theory?
	D-modules theory?
	D-modules theory?

	Linear Partial Differential Equations
	Linear Partial Differential Equations
	Linear Partial Differential Equations
	Linear Partial Differential Equations
	Linear Partial Differential Equations
	Linear Partial Differential Equations
	Linear Partial Differential Equations

	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools

	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools
	Problem setting: algebra tools

	Groebner bases in A_n
	Groebner bases in A_n
	Groebner bases in A_n
	Groebner bases in A_n
	Groebner bases in A_n
	Groebner bases in A_n

	Nevertheless
	Nevertheless
	Nevertheless

	First step to $Ann(�rac {1}{f})$: order 1 operators
	First step to $Ann(�rac {1}{f})$:
order 1 operators
	First step to $Ann(�rac {1}{f})$:
order 1 operators
	First step to $Ann(�rac {1}{f})$:
order 1 operators
	First step to $Ann(�rac {1}{f})$:
order 1 operators
	First step to $Ann(�rac {1}{f})$:
order 1 operators
	First step to $Ann(�rac {1}{f})$:
order 1 operators

	Logarithmic vector fields
	Logarithmic vector fields
	Logarithmic vector fields
	Logarithmic vector fields
	Logarithmic vector fields
	Logarithmic vector fields
	Logarithmic vector fields

	First examples
	First examples
	First examples
	First examples

	$Der(log f)$ and syzygies
	$Der(log f)$
and syzygies
	$Der(log f)$
and syzygies
	$Der(log f)$
and syzygies
	$Der(log f)$
and syzygies

	$Ann^{(k)}(�rac {1}{f})$
	$Ann^{(k)}(�rac {1}{f})$
	$Ann^{(k)}(�rac {1}{f})$
	$Ann^{(k)}(�rac {1}{f})$
	$Ann^{(k)}(�rac {1}{f})$
	$Ann^{(k)}(�rac {1}{f})$
	$Ann^{(k)}(�rac {1}{f})$

	Singularities Theory tools
	Singularities Theory tools
	Singularities Theory tools
	Singularities Theory tools

	Singularities Theory tools
	Singularities Theory tools
	Singularities Theory tools
	Singularities Theory tools
	Singularities Theory tools
	Singularities Theory tools

	Logarithmic Comparison Theorem
	Logarithmic Comparison Theorem
	Logarithmic Comparison Theorem

	$Ann(�rac {1}{f})$ and Log. Cohomology
	$Ann(�rac {1}{f})$
and Log. Cohomology
	$Ann(�rac {1}{f})$
and Log. Cohomology
	$Ann(�rac {1}{f})$
and Log. Cohomology
	$Ann(�rac {1}{f})$
and Log. Cohomology

	$f=xyz(x+y)(x+z)(y+z)(x+y+z)$
	$f=xyz(x+y)(x+z)(y+z)(x+y+z)$
	$f=xyz(x+y)(x+z)(y+z)(x+y+z)$
	$f=xyz(x+y)(x+z)(y+z)(x+y+z)$
	$f=xyz(x+y)(x+z)(y+z)(x+y+z)$
	$f=xyz(x+y)(x+z)(y+z)(x+y+z)$

	A (personal) tautology
	A (personal)
tautology
	A (personal)
tautology
	A (personal)
tautology
	A (personal)
tautology

	References
	Additional results
	Free (hypersurfaces)
	Free (hypersurfaces)
	Free (hypersurfaces)
	Free (hypersurfaces)
	Free (hypersurfaces)
	Free (hypersurfaces)

	LCT
	LCT
	LCT

	Free + Locally Quasi-homogeneous?
	Free + Locally Quasi-homogeneous?

	LCT for curves
	LCT for curves

	Torelli's conjecture
	Torelli's conjecture

