(Some) computable objects in D-modules theory

Francisco-Jesús Castro-Jiménez ${ }^{a}$

Departamento de Álgebra
Universidad de Sevilla (Spain)

The Second CREST-SBM International Conference
"Harmony of Gröbner bases and the modern industrial society"
Osaka (Japan), June 28-July 2, 2010
${ }^{a}$ Supported by FQM-333, MTM2007-64509 and Feder

Acknowledgments

I am very grateful to my colleagues F.J.
Calderón-Moreno, L. Narváez-Macarro
and J.M. Ucha-Enríquez for their constant help in my approach to this subject. I am also grateful to my former students J.
Gago-Vargas and M.I. Hartillo-Hermoso for their useful comments.

D-modules theory?

D-modules theory?

D for differential.

D-modules theory?

D for differential.

D for any ring of Linear Partial Differential Operators.

D-modules theory?

D for differential.

D for any ring of Linear Partial Differential Operators.
A D-module is a module over the ring D. It represents a system of LPDE.

D-modules theory?

D for differential.

D for any ring of Linear Partial Differential Operators.
Theory developed (from 1970) by I.N. Bernstein, M. Kashiwara, T. Kawai,
B. Malgrange, Z. Mebkhout, D. Quillen, M. Sato and others.

Linear Partial Differential Equations

Linear Partial Differential Equations

The system of LPDE
(1) $\begin{cases}\left(x \frac{\partial}{\partial x}+1\right)(u(x, y)) & =0 \\ \left(y \frac{\partial}{\partial y}+1\right)(u(x, y)) & =0\end{cases}$

Linear Partial Differential Equations

The system of LPDE

$$
\text { (1) } \begin{cases}\left(x \frac{\partial}{\partial x}+1\right)(u(x, y)) & =0 \\ \left(y \frac{\partial}{\partial y}+1\right)(u(x, y)) & =0\end{cases}
$$

has no non-zero holomorphic solution (at the origin).

Linear Partial Differential Equations

The system of LPDE
(1) $\begin{cases}\left(x \frac{\partial}{\partial x}+1\right)(u(x, y)) & =0 \\ \left(y \frac{\partial}{\partial y}+1\right)(u(x, y)) & =0\end{cases}$

But $\left(x \partial_{x}+1\right)\left(\frac{1}{x y}\right)=\left(y \partial_{y}+1\right)\left(\frac{1}{x y}\right)=0$

Linear Partial Differential Equations

The system of LPDE

$$
\text { (1) } \begin{cases}\left(x \frac{\partial}{\partial x}+1\right)(u(x, y)) & =0 \\ \left(y \frac{\partial}{\partial y}+1\right)(u(x, y)) & =0\end{cases}
$$

But $\left(x \partial_{x}+1\right)\left(\frac{1}{x y}\right)=\left(y \partial_{y}+1\right)\left(\frac{1}{x y}\right)=0$
The meromorphic function $\frac{1}{x y}$ is a solution of the system (1)

Linear Partial Differential Equations

The system of LPDE

$$
\text { (1) } \begin{cases}\left(x \frac{\partial}{\partial x}+1\right)(u(x, y)) & =0 \\ \left(y \frac{\partial}{\partial y}+1\right)(u(x, y)) & =0\end{cases}
$$

$$
\text { But }\left(x \partial_{x}+1\right)\left(\frac{1}{x y}\right)=\left(y \partial_{y}+1\right)\left(\frac{1}{x y}\right)=0
$$

The meromorphic function $\frac{1}{x y}$ is a solution of the system (1) What does it look like the set of LPDO $Q=Q\left(x, y, \partial_{x}, \partial_{y}\right)$ such that $Q\left(\frac{1}{x y}\right)=0$?

Linear Partial Differential Equations

The system of LPDE

$$
\text { (1) }\left\{\begin{aligned}
\left(x \frac{\partial}{\partial x}+1\right)(u(x, y)) & =0 \\
\left(y \frac{\partial}{\partial y}+1\right)(u(x, y)) & =0
\end{aligned}\right.
$$

$$
\text { But }\left(x \partial_{x}+1\right)\left(\frac{1}{x y}\right)=\left(y \partial_{y}+1\right)\left(\frac{1}{x y}\right)=0
$$

The meromorphic function $\frac{1}{x y}$ is a solution of the system (1)
A kind of "inverse problem": The input is the solution $\frac{1}{x y}$ and
we want the set of equations $Q\left(x, y, \partial_{x}, \partial_{y}\right)(u(x, y))=0$
having $u(x, y)=\frac{1}{x y}$ as a solution.

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }\left(n \in \mathbb{Z}_{\geq 1}\right) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring. }
\end{gathered}
$$

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }(n \in \mathbb{Z} \geq 1) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring } . \\
\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial=\left(\partial_{1}, \ldots, \partial_{n}\right) .
\end{gathered}
$$

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }(n \in \mathbb{Z} \geq 1) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring } . \\
\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial=\left(\partial_{1}, \ldots, \partial_{n}\right) . \\
\text { LPDO } P=\sum_{\beta} p_{\beta}(x) \partial^{\beta} \text { (finite sum) } \\
\beta \in \mathbb{N}^{n}, \quad p_{\beta}(x) \in \mathbb{C}[x] .
\end{gathered}
$$

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }(n \in \mathbb{Z} \geq 1) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring. } \\
\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial=\left(\partial_{1}, \ldots, \partial_{n}\right) . \\
\text { LPDO } P=\sum_{\beta} p_{\beta}(x) \partial^{\beta} \text { (finite sum) } \\
\beta \in \mathbb{N}^{n}, \quad p_{\beta}(x) \in \mathbb{C}[x] . \\
\partial^{\beta}=\partial_{1}^{\beta_{1}} \cdots \partial_{n}^{\beta_{n}}=\frac{\partial^{\beta_{1}+\cdots+\beta_{n}}}{\partial x_{1}^{\beta_{1} \ldots \partial x_{n}^{\beta_{n}}}}
\end{gathered}
$$

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }(n \in \mathbb{Z} \geq 1) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring } . \\
\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial=\left(\partial_{1}, \ldots, \partial_{n}\right) . \\
\text { LPDO } P=\sum_{\beta} p_{\beta}(x) \partial^{\beta} \text { (finite sum) } \\
\beta \in \mathbb{N}^{n}, \quad p_{\beta}(x) \in \mathbb{C}[x] .
\end{gathered}
$$

$A_{n}=A_{n}(\mathbb{C})$ the set of LPDO (with polynomial coefficients).

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }(n \in \mathbb{Z} \geq 1) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring. } \\
\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial=\left(\partial_{1}, \ldots, \partial_{n}\right) . \\
\text { LPDO } P=\sum_{\beta} p_{\beta}(x) \partial^{\beta} \text { (finite sum) } \\
\beta \in \mathbb{N}^{n}, \quad p_{\beta}(x) \in \mathbb{C}[x] .
\end{gathered}
$$

$A_{n}=A_{n}(\mathbb{C})$ the set of LPDO (with polynomial coefficients). LPDO can be added (obvious way) and also multiplied: the product $P Q$ is computed by applying Leibniz's rule:

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }(n \in \mathbb{Z} \geq 1) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring } . \\
\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial=\left(\partial_{1}, \ldots, \partial_{n}\right) . \\
\text { LPDO } P=\sum_{\beta} p_{\beta}(x) \partial^{\beta} \text { (finite sum) } \\
\beta \in \mathbb{N}^{n}, \quad p_{\beta}(x) \in \mathbb{C}[x] .
\end{gathered}
$$

$A_{n}=A_{n}(\mathbb{C})$ the set of LPDO (with polynomial coefficients). LPDO can be added (obvious way) and also multiplied: the product $P Q$ is computed by applying Leibniz's rule:

$$
\left.\partial_{i} f=f \partial_{i}+\frac{\partial f}{\partial x_{i}} \text { (for } f \in \mathbb{C}[x]\right) .
$$

Problem setting: algebra tools

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{n}\right) \text { indeterminates }(n \in \mathbb{Z} \geq 1) \\
\mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text { polynomial ring } . \\
\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial=\left(\partial_{1}, \ldots, \partial_{n}\right) . \\
\text { LPDO } P=\sum_{\beta} p_{\beta}(x) \partial^{\beta} \text { (finite sum) } \\
\beta \in \mathbb{N}^{n}, \quad p_{\beta}(x) \in \mathbb{C}[x] .
\end{gathered}
$$

$A_{n}=A_{n}(\mathbb{C})$ the set of LPDO (with polynomial coefficients). LPDO can be added (obvious way) and also multiplied: the product $P Q$ is computed by applying Leibniz's rule:

$$
\left.\partial_{i} f=f \partial_{i}+\frac{\partial f}{\partial x_{i}} \text { (for } f \in \mathbb{C}[x]\right) .
$$

A_{n} is a (non-commutative) ring (the Weyl algebra).

Problem setting: algebra tools

Problem setting: algebra tools

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$
Compute the set
$\left\{P \in A_{n} \left\lvert\, P\left(\frac{1}{f}\right)=0\right.\right\}$.

Problem setting: algebra tools

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$
Compute the set
$\left\{P \in A_{n} \left\lvert\, P\left(\frac{1}{f}\right)=0\right.\right\}$.
Previous set is a (left) ideal in the ring A_{n}.
It is denoted $\operatorname{Ann}\left(\frac{1}{f}\right)$ the annihilating ideal of $\frac{1}{f}$.

Problem setting: algebra tools

$$
\begin{gathered}
\text { Problem 1. Given } 0 \neq f \in \mathbb{C}[x] \\
\text { Compute the set } \\
\left\{P \in A_{n} \left\lvert\, P\left(\frac{1}{f}\right)=0\right.\right\} .
\end{gathered}
$$

Previous set is a (left) ideal in the ring A_{n}.
It is denoted $\operatorname{Ann}\left(\frac{1}{f}\right)$ the annihilating ideal of $\frac{1}{f}$.
(Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_{n} is finitely generated.

Problem setting: algebra tools

$$
\begin{gathered}
\text { Problem 1. Given } 0 \neq f \in \mathbb{C}[x] \\
\text { Compute the set } \\
\left\{P \in A_{n} \left\lvert\, P\left(\frac{1}{f}\right)=0\right.\right\} .
\end{gathered}
$$

Previous set is a (left) ideal in the ring A_{n}.
It is denoted $\operatorname{Ann}\left(\frac{1}{f}\right)$ the annihilating ideal of $\frac{1}{f}$.
(Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_{n} is finitely generated.
(T. Oaku, N. Takayama) Describe an algorithm solving Problem 1.

Problem setting: algebra tools

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$
Compute the set

$$
\left\{P \in A_{n} \left\lvert\, P\left(\frac{1}{f}\right)=0\right.\right\} .
$$

Previous set is a (left) ideal in the ring A_{n}.
It is denoted $\operatorname{Ann}\left(\frac{1}{f}\right)$ the annihilating ideal of $\frac{1}{f}$.
(Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_{n} is finitely generated.
(T. Oaku, N. Takayama) Describe an algorithm solving Problem 1.
Input: A non zero polynomial $f \in \mathbb{C}[x]$.
Output: A finite generating system for the ideal $\operatorname{Ann}\left(\frac{1}{f}\right)$.

Problem setting: algebra tools

Problem 1. Given $0 \neq f \in \mathbb{C}[x]$
Compute the set

$$
\left\{P \in A_{n} \left\lvert\, P\left(\frac{1}{f}\right)=0\right.\right\} .
$$

Previous set is a (left) ideal in the ring A_{n}.
It is denoted $\operatorname{Ann}\left(\frac{1}{f}\right)$ the annihilating ideal of $\frac{1}{f}$.
(Noetherianity: Hilbert's basis Th.) Any (left) ideal in A_{n} is finitely generated.
(T. Oaku, N. Takayama) Describe an algorithm solving Problem 1.
Object $\operatorname{Ann}\left(\frac{1}{f}\right)$ is computable.
Oaku-Takayama's algorithm is implemented in

$$
\begin{gathered}
\text { Kan/sm1 (risa/asir); Macaulay2 (D-modules.m2); } \\
\text { Singular. }
\end{gathered}
$$

Groebner bases in A_{n}

Groebner bases in A_{n}

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_{n}.
There is a close algorithm by Oaku-Takayama-Walther computing $\operatorname{Ann}\left(\frac{1}{f}\right)$.

Groebner bases in A_{n}

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_{n}.
There is a close algorithm by Oaku-Takayama-Walther computing Ann($\left.\frac{1}{f}\right)$.
As many algorithms in Algebraic Geometry their complexity is double exponential.

Groebner bases in A_{n}

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_{n}.
There is a close algorithm by Oaku-Takayama-Walther computing $\operatorname{Ann}\left(\frac{1}{f}\right)$.
As many algorithms in Algebraic Geometry their complexity is double exponential.
No general alternative methods to compute $\operatorname{Ann}\left(\frac{1}{f}\right)$ are known.

Groebner bases in A_{n}

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_{n}.
There is a close algorithm by Oaku-Takayama-Walther computing $\operatorname{Ann}\left(\frac{1}{f}\right)$.
As many algorithms in Algebraic Geometry their complexity is double exponential.
No general alternative methods to compute $\operatorname{Ann}\left(\frac{1}{f}\right)$ are known.

$$
\text { Ex.: } f=x y z(x+y)(x+z)(y+z)(x+y+z) \text {. }
$$

Groebner bases in A_{n}

Oaku-Takayama's algorithm uses Groebner bases and Buchberger algorithm in the ring of LPDO A_{n}.
There is a close algorithm by Oaku-Takayama-Walther computing $\operatorname{Ann}\left(\frac{1}{f}\right)$.
As many algorithms in Algebraic Geometry their complexity is double exponential.
No general alternative methods to compute $\operatorname{Ann}\left(\frac{1}{f}\right)$ are known.

$$
\text { Ex.: } f=x y z(x+y)(x+z)(y+z)(x+y+z)
$$

Macaulay 2: RatAnn f computes $\operatorname{Ann}\left(\frac{1}{f}\right)$. But for this example, in my computer, Macaulay2 gives

$$
\text { *** out of memory, exiting } * * * \text {. }
$$

Nevertheless

Nevertheless, we can prove that $\operatorname{Ann}\left(\frac{1}{f}\right)$ is generated by the three operators

$$
P_{1}, P_{2}, P_{3}
$$

Nevertheless

$$
\begin{gathered}
P_{1}=x \partial_{x}+y \partial_{y}+z \partial_{z}+7 \\
P_{2}=y(x+y)(y+z) \partial_{y}-z(x+z)(y+z) \partial_{z}+(y-z)(x+4 y+4 z) \\
P_{3}=y(x-y)(x+y) \partial_{y}+z(x+z)(x+3 y+3 z) \partial_{z}+3 x^{2}+5 x y- \\
4 y^{2}+8 x z+8 y z+8 z^{2}
\end{gathered}
$$

Nevertheless

$$
\begin{gathered}
P_{1}=x \partial_{x}+y \partial_{y}+z \partial_{z}+7 \\
P_{2}=y(x+y)(y+z) \partial_{y}-z(x+z)(y+z) \partial_{z}+(y-z)(x+4 y+4 z) \\
P_{3}=y(x-y)(x+y) \partial_{y}+z(x+z)(x+3 y+3 z) \partial_{z}+3 x^{2}+5 x y- \\
4 y^{2}+8 x z+8 y z+8 z^{2}
\end{gathered}
$$

How to prove that?

First step to $\operatorname{Ann}\left(\frac{1}{f}\right)$: order $\mathbf{1}$ operators

First step to $\operatorname{Ann}\left(\frac{1}{f}\right)$: order $\mathbf{1}$ operators

If $f \in \mathbb{C}($ and $f \neq 0)$ then $\operatorname{Ann}\left(\frac{1}{f}\right)=A_{n}\left(\partial_{1}, \ldots, \partial_{n}\right)$.

First step to $\operatorname{Ann}\left(\frac{1}{f}\right)$: order $\mathbf{1}$ operators

Assume f is not a constant polynomial.

First step to $\operatorname{Ann}\left(\frac{1}{f}\right)$: order $\mathbf{1}$ operators

Assume P is a first order operator

$$
\begin{aligned}
P= & \sum_{i=1}^{n} p_{i}(x) \partial_{i}+p_{0}(x) \\
& p_{i}(x) \in \mathbb{C}[x] .
\end{aligned}
$$

First step to $\operatorname{Ann}\left(\frac{1}{f}\right)$: order $\mathbf{1}$ operators

Assume P is a first order operator

$$
\begin{gathered}
P=\sum_{i=1}^{n} p_{i}(x) \partial_{i}+p_{0}(x) \\
p_{i}(x) \in \mathbb{C}[x] .
\end{gathered}
$$

Remark: $P\left(\frac{1}{f}\right)=0$ if and only if $\sum_{i=1}^{n} p_{i}(x) \frac{\partial f}{\partial x_{i}}=p_{0}(x) f$.

First step to $\operatorname{Ann}\left(\frac{1}{f}\right)$: order $\mathbf{1}$ operators

Assume P is a first order operator

$$
\begin{aligned}
P= & \sum_{i=1}^{n} p_{i}(x) \partial_{i}+p_{0}(x) \\
& p_{i}(x) \in \mathbb{C}[x] .
\end{aligned}
$$

Remark: $P\left(\frac{1}{f}\right)=0$ if and only if $\sum_{i=1}^{n} p_{i}(x) \frac{\partial f}{\partial x_{i}}=p_{0}(x) f$.
(K. Saito): The vector field $\sum p_{i}(x) \partial_{i}$ is called logarithmic w.r.t. f.

First step to $\operatorname{Ann}\left(\frac{1}{f}\right)$: order 1 operators

Assume P is a first order operator

$$
\begin{aligned}
P= & \sum_{i=1}^{n} p_{i}(x) \partial_{i}+p_{0}(x) \\
& p_{i}(x) \in \mathbb{C}[x] .
\end{aligned}
$$

Remark: $P\left(\frac{1}{f}\right)=0$ if and only if $\sum_{i=1}^{n} p_{i}(x) \frac{\partial f}{\partial x_{i}}=p_{0}(x) f$.
(K. Saito): The vector field $\sum p_{i}(x) \partial_{i}$ is called logarithmic w.r.t. f.

Ex.: $f \partial_{i}$ is a logarithmic vector field (for $i=1, \ldots, n$) w.r.t. f and $f \partial_{i}+\partial_{i}(f)$ annihilates $\frac{1}{f}$.

Logarithmic vector fields

(K. Saito): $\operatorname{Der}(\log f)$ the set of logarithmic vector field (with respect to f).

Logarithmic vector fields

(K. Saito): $\operatorname{Der}(\log f)$ the set of logarithmic vector field (with respect to f).
$\delta=\sum_{i} p_{i}(x) \partial_{i} \in \operatorname{Der}(\log f)$ if and only if
$\delta(f)=\sum_{i} p_{i}(x) \partial_{i}(f)=p_{0}(x) f$
for some $p_{0}(x) \in \mathbb{C}[x]$.
Notice that $p_{0}(x)=\frac{\delta(f)}{f}$.

Logarithmic vector fields

(K. Saito): $\operatorname{Der}(\log f)$ the set of logarithmic vector field (with respect to f).
$\delta=\sum_{i} p_{i}(x) \partial_{i} \in \operatorname{Der}(\log f)$ if and only if
$\delta(f)=\sum_{i} p_{i}(x) \partial_{i}(f)=p_{0}(x) f$
for some $p_{0}(x) \in \mathbb{C}[x]$.
Notice that $p_{0}(x)=\frac{\delta(f)}{f}$.
$\widetilde{\operatorname{Der}}(\log f)=\left\{\left.\delta+\frac{\delta(f)}{f} \right\rvert\, \delta \in \operatorname{Der}(\log f)\right\}$

Logarithmic vector fields

(K. Saito): $\operatorname{Der}(\log f)$ the set of logarithmic vector field (with respect to f).
$\delta=\sum_{i} p_{i}(x) \partial_{i} \in \operatorname{Der}(\log f)$ if and only if
$\delta(f)=\sum_{i} p_{i}(x) \partial_{i}(f)=p_{0}(x) f$
for some $p_{0}(x) \in \mathbb{C}[x]$.
Notice that $p_{0}(x)=\frac{\delta(f)}{f}$.
$\widetilde{\operatorname{Der}}(\log f)=\left\{\left.\delta+\frac{\delta(f)}{f} \right\rvert\, \delta \in \operatorname{Der}(\log f)\right\}$
Denote $A n n^{(1)}\left(\frac{1}{f}\right)$ the ideal in A_{n} generated by LPDO P of order 1 and $P\left(\frac{1}{f}\right)=0$.

Logarithmic vector fields

(K. Saito): $\operatorname{Der}(\log f)$ the set of logarithmic vector field (with respect to f).
$\delta=\sum_{i} p_{i}(x) \partial_{i} \in \operatorname{Der}(\log f)$ if and only if
$\delta(f)=\sum_{i} p_{i}(x) \partial_{i}(f)=p_{0}(x) f$
for some $p_{0}(x) \in \mathbb{C}[x]$.
Notice that $p_{0}(x)=\frac{\delta(f)}{f}$.
$\widetilde{\operatorname{Der}}(\log f)=\left\{\left.\delta+\frac{\delta(f)}{f} \right\rvert\, \delta \in \operatorname{Der}(\log f)\right\}$
Denote $A n n^{(1)}\left(\frac{1}{f}\right)$ the ideal in A_{n} generated by LPDO P of order 1 and $P\left(\frac{1}{f}\right)=0$.
Remark: $A n n^{(1)}\left(\frac{1}{f}\right)=A_{n} \widetilde{\operatorname{Der}}(\log f)$.

Logarithmic vector fields

(K. Saito): $\operatorname{Der}(\log f)$ the set of logarithmic vector field (with respect to f).
$\delta=\sum_{i} p_{i}(x) \partial_{i} \in \operatorname{Der}(\log f)$ if and only if
$\delta(f)=\sum_{i} p_{i}(x) \partial_{i}(f)=p_{0}(x) f$
for some $p_{0}(x) \in \mathbb{C}[x]$.
Notice that $p_{0}(x)=\frac{\delta(f)}{f}$.
$\widetilde{\operatorname{Der}}(\log f)=\left\{\left.\delta+\frac{\delta(f)}{f} \right\rvert\, \delta \in \operatorname{Der}(\log f)\right\}$
Denote $A n n^{(1)}\left(\frac{1}{f}\right)$ the ideal in A_{n} generated by LPDO P of order 1 and $P\left(\frac{1}{f}\right)=0$.

$$
\operatorname{Ann}^{(1)}\left(\frac{1}{f}\right) \subset \operatorname{Ann}\left(\frac{1}{f}\right)
$$

Logarithmic vector fields

(K. Saito): $\operatorname{Der}(\log f)$ the set of logarithmic vector field (with respect to f).
$\delta=\sum_{i} p_{i}(x) \partial_{i} \in \operatorname{Der}(\log f)$ if and only if
$\delta(f)=\sum_{i} p_{i}(x) \partial_{i}(f)=p_{0}(x) f$
for some $p_{0}(x) \in \mathbb{C}[x]$.
Notice that $p_{0}(x)=\frac{\delta(f)}{f}$.
$\widetilde{\operatorname{Der}}(\log f)=\left\{\left.\delta+\frac{\delta(f)}{f} \right\rvert\, \delta \in \operatorname{Der}(\log f)\right\}$
Denote $A n n^{(1)}\left(\frac{1}{f}\right)$ the ideal in A_{n} generated by LPDO P of order 1 and $P\left(\frac{1}{f}\right)=0$.
Problem 2. Describe (characterize) the class of nonzero $f \in \mathbb{C}[x]$ such that

$$
A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right) .
$$

First examples

$$
\begin{gathered}
\text { Ex.: } n=1, x=x_{1} \\
\operatorname{Ann}^{(1)}\left(\frac{1}{x}\right)=\operatorname{Ann}\left(\frac{1}{x}\right)=A_{1}\left(x \partial_{x}+1\right)
\end{gathered}
$$

First examples

$$
\begin{gathered}
\text { Ex. }: n=2, x=x_{1}, y=x_{2} \\
A^{\prime} n^{(1)}\left(\frac{1}{x y}\right)=\operatorname{Ann}\left(\frac{1}{x y}\right)=A_{2}\left(x \partial_{x}+1, y \partial_{y}+1\right)
\end{gathered}
$$

First examples

$$
\begin{aligned}
& \text { Ex.: } n=2, x=x_{1}, y=x_{2} . \\
& \operatorname{Ann}^{(1)}\left(\frac{1}{x-y^{2}}\right)=\operatorname{Ann}\left(\frac{1}{x-y^{2}}\right)= \\
& A_{2}\left(2 y \partial_{x}+\partial_{y},\left(x-y^{2}\right) \partial_{x}\right) .
\end{aligned}
$$

First examples

$$
\begin{gathered}
\text { Ex.: } n=2, \\
\operatorname{Ann}^{(1)}\left(\frac{1}{x^{4}+y^{5}+x y^{4}}\right) \varsubsetneqq \operatorname{Ann}\left(\frac{1}{x^{4}+y^{5}+x y^{4}}\right) .
\end{gathered}
$$

$\operatorname{Der}(\log f)$ and syzygies

$$
\operatorname{Der}(\log f) \longrightarrow \operatorname{Syz}\left(\partial_{1}(f), \ldots, \partial_{n}(f), f\right)
$$

$\operatorname{Der}(\log f)$ and syzygies

$$
\begin{gathered}
\operatorname{Der}(\log f) \longrightarrow \operatorname{Syz}\left(\partial_{1}(f), \ldots, \partial_{n}(f), f\right) \\
\delta=\sum_{i} p_{i}(x) \partial_{i} \mapsto\left(p_{1}(x), \ldots, p_{n}(x),-\frac{\delta(f)}{f}\right) .
\end{gathered}
$$

$\operatorname{Der}(\log f)$ and syzygies

$$
\begin{gathered}
\operatorname{Der}(\log f) \longrightarrow \operatorname{Syz}\left(\partial_{1}(f), \ldots, \partial_{n}(f), f\right) \\
\delta=\sum_{i} p_{i}(x) \partial_{i} \mapsto\left(p_{1}(x), \ldots, p_{n}(x),-\frac{\delta(f)}{f}\right) .
\end{gathered}
$$

Previous map is an isomorphism of $\mathbb{C}[x]$-modules. So, object $\operatorname{Der}(\log f)$ is computable.
By using commutative Groebner basis computation in the polynomial ring $\mathbb{C}[x]$.

$\operatorname{Der}(\log f)$ and syzygies

$$
\begin{gathered}
\operatorname{Der}(\log f) \longrightarrow \operatorname{Syz}\left(\partial_{1}(f), \ldots, \partial_{n}(f), f\right) \\
\delta=\sum_{i} p_{i}(x) \partial_{i} \mapsto\left(p_{1}(x), \ldots, p_{n}(x),-\frac{\delta(f)}{f}\right) .
\end{gathered}
$$

Previous map is an isomorphism of $\mathbb{C}[x]$-modules. So, object $\operatorname{Der}(\log f)$ is computable.
By using commutative Groebner basis computation in the polynomial ring $\mathbb{C}[x]$.

Ann ${ }^{(1)}\left(\frac{1}{f}\right)$ is computable (using only commutative Groebner bases algorithms; which also have double exponential complexity).

$\operatorname{Der}(\log f)$ and syzygies

$$
\begin{gathered}
\operatorname{Der}(\log f) \longrightarrow S y z\left(\partial_{1}(f), \ldots, \partial_{n}(f), f\right) \\
\delta=\sum_{i} p_{i}(x) \partial_{i} \mapsto\left(p_{1}(x), \ldots, p_{n}(x),-\frac{\delta(f)}{f}\right) .
\end{gathered}
$$

Previous map is an isomorphism of $\mathbb{C}[x]$-modules. So, object $\operatorname{Der}(\log f)$ is computable.
By using commutative Groebner basis computation in the polynomial ring $\mathbb{C}[x]$.

In practice $A n n^{(1)}\left(\frac{1}{f}\right)$ is easier to compute than $\operatorname{Ann}\left(\frac{1}{f}\right)$.

$A n n^{(k)}\left(\frac{1}{f}\right)$

$$
A n n^{(k)}\left(\frac{1}{f}\right)
$$

$$
\begin{gathered}
k \in \mathbb{Z}_{\geq 1} \cdot \text { Ann }^{(k)}\left(\frac{1}{f}\right) \\
\text { ideal in } A_{n} \text { generated by LPDO } P \text { such that } \\
P\left(\frac{1}{f}\right)=0 \text { and } \operatorname{ord}(P) \leq k .
\end{gathered}
$$

$$
\operatorname{Ann}^{(k)}\left(\frac{1}{f}\right)
$$

$$
k \in \mathbb{Z}_{\geq 1} . A n n^{(k)}\left(\frac{1}{f}\right)
$$

ideal in A_{n} generated by LPDO P such that $P\left(\frac{1}{f}\right)=0$ and $\operatorname{ord}(P) \leq k$.
$A n n^{(k)}\left(\frac{1}{f}\right)$ is also computable (using only commutative Groebner basis algorithms).

$$
A n n^{(k)}\left(\frac{1}{f}\right)
$$

$$
k \in \mathbb{Z}_{\geq 1} . A n n^{(k)}\left(\frac{1}{f}\right)
$$

ideal in A_{n} generated by LPDO P such that

$$
P\left(\frac{1}{f}\right)=0 \text { and } \operatorname{ord}(P) \leq k .
$$

$A n n^{(k)}\left(\frac{1}{f}\right)$ is also computable (using only commutative Groebner basis algorithms).

$$
\begin{gathered}
\text { Ex.: } P=\sum_{i \leq j} p_{i j}(x) \partial_{i} \partial_{j}+\sum_{i} p_{i}(x) \partial_{i}+p_{0}(x) \\
P\left(\frac{1}{f}\right)=0 \text { if and only if }
\end{gathered}
$$

the coefficients $\left(p_{i j}(x), p_{i}(x), p_{0}(x)\right)$ represent a syzygy among f^{2} and a set of expressions in the partial derivatives of f up to degree 2 .

$$
\operatorname{Ann}^{(k)}\left(\frac{1}{f}\right)
$$

$$
k \in \mathbb{Z}_{\geq 1} . A n n^{(k)}\left(\frac{1}{f}\right)
$$

ideal in A_{n} generated by LPDO P such that $P\left(\frac{1}{f}\right)=0$ and $\operatorname{ord}(P) \leq k$.
$A n n^{(k)}\left(\frac{1}{f}\right)$ is also computable (using only commutative Groebner basis algorithms).

$$
A n n^{(1)}\left(\frac{1}{f}\right) \subset A n n^{(2)}\left(\frac{1}{f}\right) \subset \cdots \subset A n n^{(k)}\left(\frac{1}{f}\right) \subset \cdots \subset \operatorname{Ann}\left(\frac{1}{f}\right) .
$$

$$
A n n^{(k)}\left(\frac{1}{f}\right)
$$

$$
k \in \mathbb{Z}_{\geq 1} . A n n^{(k)}\left(\frac{1}{f}\right)
$$

ideal in A_{n} generated by LPDO P such that $P\left(\frac{1}{f}\right)=0$ and $\operatorname{ord}(P) \leq k$.
$A n n^{(k)}\left(\frac{1}{f}\right)$ is also computable (using only commutative Groebner basis algorithms).
(Noetherianity): There exists a minimal integer $k \geq 1$ ($k=k(f)$ depending on f) such that

$$
A n n^{(k)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right) .
$$

$$
A n n^{(k)}\left(\frac{1}{f}\right)
$$

$$
k \in \mathbb{Z}_{\geq 1} . A n n^{(k)}\left(\frac{1}{f}\right)
$$

ideal in A_{n} generated by LPDO P such that

$$
P\left(\frac{1}{f}\right)=0 \text { and } \operatorname{ord}(P) \leq k .
$$

$A n n^{(k)}\left(\frac{1}{f}\right)$ is also computable (using only commutative Groebner basis algorithms).
(Noetherianity): There exists a minimal integer $k \geq 1$ ($k=k(f)$ depending on f) such that

$$
A n n^{(k)}\left(\frac{1}{f}\right)=A n n\left(\frac{1}{f}\right) .
$$

Problem 3. Describe the behavior of the function

$$
0 \neq f \in \mathbb{C}[x] \mapsto k(f) .
$$

Singularities Theory tools

From now on, we assume f is a reduced nonzero polynomial in $\mathbb{C}[x]$.
Ω^{p} differential p-forms with polynomial coefficients, $p \in \mathbb{N}$.

Singularities Theory tools

$\Omega^{p}(1 / f)$ meromorphic differential p-forms with poles along $f=0, p \in \mathbb{N}$.

Singularities Theory tools

$\Omega^{p}(1 / f)$ meromorphic differential p-forms with poles along $f=0, p \in \mathbb{N}$.
(E. Brieskorn) The cohomology of $\Omega^{\bullet}(1 / f)$ is computable if f is an arrangement of hyperplanes.

Singularities Theory tools

$\Omega^{p}(1 / f)$ meromorphic differential p-forms with poles along $f=0, p \in \mathbb{N}$.
(E. Brieskorn) The cohomology of $\Omega^{\bullet}(1 / f)$ is computable if f is an arrangement of hyperplanes.
(T. Oaku, N.Takayama) For any nonzero polynomial $f \in \mathbb{C}[x]$, the cohomology of $\Omega^{\bullet}(1 / f)$ is computable.

Singularities Theory tools

$\Omega^{p}(1 / f) \supset \Omega^{p}(\log f)$ logarithmic differential p-forms (w.r.t. f).

Singularities Theory tools

$\Omega^{p}(1 / f) \supset \Omega^{p}(\log f)$ logarithmic differential p-forms (w.r.t. f).
(K. Saito): $\omega \in \Omega^{p}(1 / f)$ is said to be logarithmic (w.r.t. f) if $f \omega$ and $f d \omega$ have no poles.

Singularities Theory tools

$\Omega^{p}(1 / f) \supset \Omega^{p}(\log f)$ logarithmic differential p-forms (w.r.t. f).
(K. Saito): $\omega \in \Omega^{p}(1 / f)$ is said to be logarithmic (w.r.t. f) if $f \omega$ and $f d \omega$ have no poles.

Ex.: $\frac{d x}{x}$ and $\frac{d y}{y}$ are logarithmic 1-forms (w.r.t. $f=x y$).

$$
\frac{d x}{x^{2}}, \frac{d x}{y} \text { are not. }
$$

Singularities Theory tools

$\Omega^{p}(1 / f) \supset \Omega^{p}(\log f)$ logarithmic differential p-forms (w.r.t. f). (K. Saito): $\omega \in \Omega^{p}(1 / f)$ is said to be logarithmic (w.r.t. f) if $f \omega$ and $f d \omega$ have no poles.

The inclusion $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a morphism of complexes (both with the exterior derivative).

Singularities Theory tools

$\Omega^{p}(1 / f) \supset \Omega^{p}(\log f)$ logarithmic differential p-forms (w.r.t. f).
(K. Saito): $\omega \in \Omega^{p}(1 / f)$ is said to be logarithmic (w.r.t. f) if $f \omega$ and $f d \omega$ have no poles.

The inclusion $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a morphism of complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the cohomology of the logarithmic complex $\Omega^{\bullet}(\log f)$ for a given nonzero polynomial f.

Singularities Theory tools

$\Omega^{p}(1 / f) \supset \Omega^{p}(\log f)$ logarithmic differential p-forms (w.r.t. f).
(K. Saito): $\omega \in \Omega^{p}(1 / f)$ is said to be logarithmic (w.r.t. f) if $f \omega$ and $f d \omega$ have no poles.

The inclusion $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a morphism of complexes (both with the exterior derivative).

Problem 4. Describe an algorithm computing the cohomology of the logarithmic complex $\Omega^{\bullet}(\log f)$ for a given nonzero polynomial f.
(N. Takayama- F.J.C.J.) Positive solution to Problem 4 if $n=2$.

Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

 polynomial f such that $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.
Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero

 polynomial f such that $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism. quasi-isomorphism \equiv induces an isomorphism in cohomology.
Logarithmic Comparison Theorem

Problem 5. Describe the class of nonzero polynomial f such that $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.

If so, we say that the Logarithmic
Comparison Property (LCP) holds for f (or

$$
\text { for } f=0) \text {. }
$$

Ann $\left(\frac{1}{f}\right)$ and Log. Cohomology
(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials

Ann ${ }^{(1)}\left(\frac{1}{f}\right)=A n n\left(\frac{1}{f}\right)$ in and only if $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.

$A n n\left(\frac{1}{f}\right)$ and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
$A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right)$ in and only if $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.

Freeness is computable (related to Quillen-Suslin Th.). Spencer property is computable (with Groebner basis in $\left.A_{n}\right)$.

$A n n\left(\frac{1}{f}\right)$ and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials
$A n n^{(1)}\left(\frac{1}{f}\right)=A n n\left(\frac{1}{f}\right)$ in and only if $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.

The class (Spencer + free) strictly contains

- all non constant $f(x, y)$ (K. Saito; F. Calderón) and
- all free arrangement of hyperplanes in \mathbb{C}^{n} (for $n \in \mathbb{N}$) (F.

Calderón-L. Narváez).

Ann $\left(\frac{1}{f}\right)$ and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials $A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right)$ in and only if $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.

The class (Spencer + free) strictly contains

- all non constant $f(x, y)$ (K. Saito; F. Calderón) and
- all free arrangement of hyperplanes in \mathbb{C}^{n} (for $n \in \mathbb{N}$) (F.

Calderón-L. Narváez).

$$
\begin{gathered}
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { if free and Spencer. } \\
f=x y z(x+y+z) \text { is Spencer but not free. } \\
f=(x+y z)\left(x^{4}+y^{5}+x y^{4}\right) \text { is free but not Spencer (} \mathrm{F} . \\
\text { Calderón-L. Narváez). }
\end{gathered}
$$

Ann $\left(\frac{1}{f}\right)$ and Log. Cohomology

(J.M. Ucha-F.J.C.J.) For (Spencer + free) polynomials $A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right)$ in and only if $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.

The class (Spencer + free) strictly contains

- all non constant $f(x, y)$ (K. Saito; F. Calderón) and
- all free arrangement of hyperplanes in \mathbb{C}^{n} (for $n \in \mathbb{N}$) (F.

Calderón-L. Narváez).

$$
\begin{gathered}
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { if free and Spencer. } \\
f=x y z(x+y+z) \text { is Spencer but not free. } \\
f=(x+y z)\left(x^{4}+y^{5}+x y^{4}\right) \text { is free but not Spencer (} \mathrm{F} . \\
\text { Calderón-L. Narváez). }
\end{gathered}
$$

$$
f=x y z(x+y)(x+z)(y+z)(x+y+z)
$$

$$
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { is Spencer }+ \text { free }
$$

$f=x y z(x+y)(x+z)(y+z)(x+y+z)$

$$
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { is Spencer }+ \text { free }
$$

Moreover, $i_{f}: \Omega^{\bullet}(\log f) \xrightarrow{\text { qiso. }} \Omega^{\bullet}(1 / f)$
(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

$f=x y z(x+y)(x+z)(y+z)(x+y+z)$

$$
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { is Spencer }+ \text { free }
$$

Moreover, $i_{f}: \Omega^{\bullet}(\log f) \xrightarrow{\text { qiso. }} \Omega^{\bullet}(1 / f)$
(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

$$
\text { So } \operatorname{Ann} n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right) \text {. }
$$

$f=x y z(x+y)(x+z)(y+z)(x+y+z)$

$$
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { is Spencer }+ \text { free }
$$

Moreover, $i_{f}: \Omega^{\bullet}(\log f) \xrightarrow{\text { q.iso. }} \Omega^{\bullet}(1 / f)$
(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

$$
\text { So } A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right) \text {. }
$$

Compute $\operatorname{Der}(\log f)$ via $\operatorname{Syz}\left(f_{x}^{\prime}, f_{y}^{\prime}, f_{z}^{\prime}, f\right)$ (Groebner basis in

$$
\mathbb{C}[x, y, z])
$$

$f=x y z(x+y)(x+z)(y+z)(x+y+z)$

$$
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { is Spencer }+ \text { free }
$$

$$
\text { Moreover, } i_{f}: \Omega^{\bullet}(\log f) \xrightarrow{\text { q.iso. }} \Omega^{\bullet}(1 / f)
$$

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

$$
\text { So } A n n^{(1)}\left(\frac{1}{f}\right)=A n n\left(\frac{1}{f}\right) \text {. }
$$

By a computation with Macaulay $2, \operatorname{Der}(\log f)$ is generated by $\delta_{1}=x \partial_{x}+y \partial_{y}+z \partial_{z}$

$$
\begin{gathered}
\delta_{2}=y(x+y)(y+z) \partial_{y}-z(x+z)(y+z) \partial_{z} \\
\delta_{3}=y(x-y)(x+y) \partial_{y}+z(x+z)(x+3 y+3 z) \partial_{z}
\end{gathered}
$$

$f=x y z(x+y)(x+z)(y+z)(x+y+z)$

$$
f=x y z(x+y)(x+z)(y+z)(x+y+z) \text { is Spencer }+ \text { free }
$$

$$
\text { Moreover, } i_{f}: \Omega^{\bullet}(\log f) \xrightarrow{q \text { q.iso. }} \Omega^{\bullet}(1 / f)
$$

(H. Terao - S. Yuzvinsky; D. Mond - L. Narváez- F.J.C.J.).

$$
\text { So } A n n^{(1)}\left(\frac{1}{f}\right)=A n n\left(\frac{1}{f}\right) \text {. }
$$

Then (as announced some slides before) $A n n^{(1)}\left(\frac{1}{f}\right)=A n n\left(\frac{1}{f}\right)$ is generated by $P 1=x \partial_{x}+y \partial_{y}+z \partial_{z}+7$

$$
P_{2}=y(x+y)(y+z) \partial_{y}-z(x+z)(y+z) \partial_{z}+(y-z)(x+4 y+4 z)
$$

$$
P_{3}=y(x-y)(x+y) \partial_{y}+z(x+z)(x+3 y+3 z) \partial_{z}+3 x^{2}+5 x y-
$$

$$
4 y^{2}+8 x z+8 y z+8 z^{2}
$$

A (personal) tautology

Homo sapiens invented the natural numbers (\mathbb{N}) to count things.

A (personal) tautology

When computations became hard to
achieve homo sapiens invented
Mathematics.
Computer Algebra is a powerful tool in Mathematics (and in particular in D-modules theory).

A (personal) tautology

Modern Industrial Society needs to do big/heavy computations. In order to
simplify them (and essentially -at least in
D-module theory- all non trivial computation are heavy)

A (personal) tautology

Modern Industrial Society needs to do big/heavy computations. In order to
simplify them (and essentially -at least in
D-module theory- all non trivial computation are heavy)
we must use meaningful and deep mathematical ideas and results.

A (personal) tautology

Modern Industrial Society needs to do big/heavy computations. In order to
simplify them (and essentially -at least in

$$
\begin{gathered}
D \text {-module theory- all non trivial } \\
\text { computation are heavy) }
\end{gathered}
$$

Testing equality $A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right)$ is a modest and clear example of such tautology.

Thank you very much.

References

References

Additional results

The following slides give more precise results
on the subject of the talk.

Free (hypersurfaces)

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^{n}) if the module
$\operatorname{Der}(\log f)$ is a free $\mathbb{C}[x]$-module.
If so, we also say that f is free.

Free (hypersurfaces)

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^{n}) if the module
$\operatorname{Der}(\log f)$ is a free $\mathbb{C}[x]$-module.
If so, we also say that f is free.

Free (hypersurfaces)

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^{n}) if the module $\operatorname{Der}(\log f)$ is a free $\mathbb{C}[x]$-module. If so, we also say that f is free.
(K. Saito) Any non constant polynomial in two variables $f(x, y)$ is free.

Free (hypersurfaces)

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^{n}) if the module
$\operatorname{Der}(\log f)$ is a free $\mathbb{C}[x]$-module.
If so, we also say that f is free.
$f=x y z(x+y)(x+z)(y+z)(x+y+z)$ is free.

Free (hypersurfaces)

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^{n}) if the module
$\operatorname{Der}(\log f)$ is a free $\mathbb{C}[x]$-module.
If so, we also say that f is free.

$$
f=x y z(x+z+z) \text { is not free. }
$$

Free (hypersurfaces)

(K. Saito) $f \in \mathbb{C}[x]$ (non constant) defines a free hypersurface (in \mathbb{C}^{n}) if the module $\operatorname{Der}(\log f)$ is a free $\mathbb{C}[x]$-module. If so, we also say that f is free. Freeness is computable (K. Saito's criterion + effective Quillen-Suslin).

LCT

(L. Narváez, D. Mond, F.J.C.J.) If $f=0$ is a free and locally quasi-homogeneous hypersurface (in \mathbb{C}^{n}) then f satisfies LCP.

LCT

(L. Narváez, D. Mond, F.J.C.J.) If $f=0$ is a free and locally quasi-homogeneous hypersurface (in \mathbb{C}^{n}) then f satisfies LCP.

So, for this class of f, by using Oaku-Takayama algorithm, $H^{p}\left(\Omega^{\bullet}(\log f)\right)=H^{p}\left(\Omega^{\bullet}(1 / f)\right)$ is computable for all p.

LCT

(L. Narváez, D. Mond, F.J.C.J.) If $f=0$ is a free and locally quasi-homogeneous hypersurface (in \mathbb{C}^{n}) then f satisfies LCP.

So, for this class of f, by using Oaku-Takayama algorithm, $H^{p}\left(\Omega^{\bullet}(\log f)\right)=H^{p}\left(\Omega^{\bullet}(1 / f)\right)$ is computable for all p. So, for this class of f, we have a positive solution of Problem 4 (the cohomology of $\Omega^{\bullet}(\log f)$ is computable)

Free + Locally Quasi-homogeneous?

How big is the class
$\{f \in \mathbb{C}[x] \mid$ free + locally quasi-homogeneous $\}$?

Free + Locally Quasi-homogeneous?

How big is the class
$\{f \in \mathbb{C}[x] \mid$ free + locally quasi-homogeneous $\}$? Previous class strictly includes: a) all the free hyperplane arrangements.
b) all locally quasi-homogeneous plane curves $f(x, y)=0$.

LCT for curves

(F.J. Calderón, L. Narváez, D. Mond,
F.J.C.J.) If $f(x, y)=0$ is a (reduced) plane curve then f satisfies LCP if and only if and all its singularities are quasi-homogeneous.

LCT for curves

(F.J. Calderón, L. Narváez, D. Mond,

F.J.C.J.) If $f(x, y)=0$ is a (reduced) plane curve then f satisfies LCP if and only if and all its singularities are quasi-homogeneous. $f=x^{4}+y^{5}+x y^{4}=0$ has a non
quasi-homogeneous singularity at the origin. Since f is free then f does not satisfy LCP. Since f is

Spencer $A n n^{(1)}\left(\frac{1}{f}\right) \varsubsetneqq \operatorname{Ann}\left(\frac{1}{f}\right)$.

Torelli's conjecture

Conjecture. For any nonzero polynomial

$f \in \mathbb{C}[x], A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right)$ if and only if
$i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.

Torelli's conjecture

Conjecture. For any nonzero polynomial $f \in \mathbb{C}[x], A n n^{(1)}\left(\frac{1}{f}\right)=\operatorname{Ann}\left(\frac{1}{f}\right)$ if and only if $i_{f}: \Omega^{\bullet}(\log f) \rightarrow \Omega^{\bullet}(1 / f)$ is a quasi-isomorphism.
(J.M. Ucha-F.J.C.J.) If $f \in \mathbb{C}[x]$ is (Spencer + free) then previous conjecture is satisfied.

