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Graphical Gaussian Models

If G = (V, E) is an undirected graph and Y = (Y4 )acv is a random
variable taking values in RIY!, the graphical Gaussian model for Y with
graph G is given by assuming that Y follows a Gaussian distribution which
obeys the (global) Markov property with respect to G.

(Global) Markov Property: For A, B,S C V,
ALgB’5:> Yall Ypg ‘ Ys

where g denotes graph separation.
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If G = (V, E) is an undirected graph and Y = (Y4 )acv is a random
variable taking values in RIY!, the graphical Gaussian model for Y with
graph G is given by assuming that Y follows a Gaussian distribution which
obeys the (global) Markov property with respect to G.

(Global) Markov Property: For A,B,S C V,
ALgB’5:> Yall Ypg ‘ Ys

where g denotes graph separation.

E.g.
4 3 (Y1, Y2, Y3, Ya) ~ N(u, )

Y1 L Y3|( Y2, Ya)
1 2 Y2 1L Ya|(Y1, Y3)



Graphical Gaussian Models

If (Ya)acv ~ N (i, ) and concentration matrix K = ¥ '= (kag)agev,
Yo L Ysl(YW\{apy) <= kap =0
Graphical Gaussian model satisfies Markov Property <= K satisfies
atBinG = kyg=0

where ~ stands for 'connected by an edge'.



Graphical Gaussian Models
If (Ya)acv ~ N (i, ) and concentration matrix K = ¥ '= (kag)agev,
Yo L Y5|(YW\{a,8)) <= kap=0
Graphical Gaussian model satisfies Markov Property <= K satisfies
adfinG = ks, =0

where ~ stands for 'connected by an edge'.
E.g.

4 3 kit kiz 0 kia

K| ker k2 ks 0

0 kos k33 ks
1 2 kia 0 kg kag



Graphical Gaussian Models with Symmetries

Hgjsgaard and Lauritzen (2008) introduced models with symmetry
restrictions, represented by vertex and edge coloured graphs (V, €):

RCON models: Symmetry restrictions on concentrations

4 3 kin kiz 0 ki

ko1 ko k3 0O
0 ko3 k33 kaa

1 2 kia 0 k3g kag



Graphical Gaussian Models with Symmetries

Hgjsgaard and Lauritzen (2008) introduced models with symmetry
restrictions, represented by vertex and edge coloured graphs (V, €):

RCON models: Symmetry restrictions on concentrations
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V= {{17 2, 3}7 {4}}
E ={{14,34} {12}, {23}}



Constraints on the Mean Vector
Hgjsgaard and Lauritzen (2008) assume: (Y, )acv ~ N(u, X) with p = 0!

For a given RCON model, we are going to characterize all nice linear
constraints on o which ensure equality between maximum likelihood
estimator of p,

fi = max L(p, K;y)
o
and least squares estimators of y,
p* = min Z(Ya - Na)z
H aeV

which guarantees that /i exists (note the likelihood depends on unknown
K) and is given by appropriate averages.

nice = all restrictions satisfied by zero vector

Chan and Godsil (1989) applied to graphical Gaussian models characterises
all valid equality constraints, we are going to give a generalisation.



Constraints on the Mean Vector

Theorem (Kruskal): For (Y, )acv ~ N(u, L) with mean p lying inside a

linear manifold Q, /i = x* if and only if Q is invariant under K = ¥ 71, i.e.
if and only if

KQ C Q.

(Kruskal, 1968; Haberman, 1975; Eaton, 1983)



Constraints on the Mean Vector

Theorem (Kruskal): For (Y, )acv ~ N(u, X) with mean p lying inside a
linear manifold Q, /i = x* if and only if Q is invariant under K = X1, i.e.
if and only if

KQ c Q.

(Kruskal, 1968; Haberman, 1975; Eaton, 1983)

For RCON models,

K = Z 0,T".
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Constraints on the Mean Vector

Theorem (Kruskal): For (Y, )acv ~ N(u, X) with mean p lying inside a
linear manifold Q, /i = x* if and only if Q is invariant under K = X1, i.e.
if and only if

KQ c Q.

(Kruskal, 1968; Haberman, 1975; Eaton, 1983)

For RCON models,

K = Z 0,T".
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Stability under Generator Matrices TY

Proposition 1 (G.): Let G = (V, ) be the dependence graph of an RCON
model with linear mean space €2. Then

KQ C Q VK inside the model «<— TYQCQ VueVUE.
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Proposition 1 (G.): Let G = (V, ) be the dependence graph of an RCON
model with linear mean space €2. Then

KQ C Q VK inside the model «<— TYQCQ VueVUE.

UEV:TIQCQ +—= Q=3 Q, Q <R
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Stability under Generator Matrices TY

Proposition 1 (G.): Let G = (V, ) be the dependence graph of an RCON
model with linear mean space €2. Then

KQ C Q VK inside the model «<— TYQCQ VueVUE.

UEV:TIQCQ +—= Q=3 Q, Q <R

u € &E: For 'nice’ Q, i.e. Q, = 0 allowed, we only need to consider the
(u, v, w)-components of G, represented by TI4v:wl ¢ R¥Uw,

af

Tluvw] _ Ty acv,peworacv,few
0 otherwise



Stability under Generator Matrices TY

Proposition 1 (G.): Let G = (V, ) be the dependence graph of an RCON
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Stability under Generator Matrices TY

Proposition 1 (G.): Let G = (V, ) be the dependence graph of an RCON
model with linear mean space €2. Then

KQ C Q VK inside the model «<— TYQCQ VueVUE.

UEV:TIQCQ +—= Q=3 Q, Q <R

u € &E: For 'nice’ Q, i.e. Q, = 0 allowed, we only need to consider the
(u, v, w)-components of G, represented by TI4v:wl ¢ R¥Uw,
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Stability under Generator Matrices TY

Proposition 2 (G.): For 'nice’ Q,
TQCQ <« TEvY(Q, e, C(Q &)

forallue &, v,weV.




Stability under Generator Matrices TY

Proposition 2 (G.): For 'nice’ Q,
TQCQ <« TEvY(Q, e, C(Q &)

forallue &, v,weV.

In general, if A is a symmetric matrix then a space S is stable under A if
and only if S is a direct sum of subspaces of the eigenspaces E;‘ of A,
which are in fact orthogonal, i.e.

ASCS <« S=a,\R\, R\<E{

Thus we require

Q,Q, < RY,R"
Qo = BrAyn A< EM™ forallucé.



Stability under Component Generator Matrices T!4¥:*]

Fact (e.g. West, 1999): A graph G is bipartite if and only if the
eigenvalues of its adjacency matrix A come in pairs: whenever X is an
eigenvalue, so is —A.




Stability under Component Generator Matrices T1%"%]

Fact (e.g. West, 1999): A graph G is bipartite if and only if the
eigenvalues of its adjacency matrix A come in pairs: whenever X is an
eigenvalue, so is —A.

Proposition 3 (G.): Q,,Q, <RY,R" are stable under Tlv-wlif and only
if

Q, =®x>0(Ar), and Q, = ®r>0(Ay),

with A, < El*v,

For A # 0, Tlv*(Q,) C Q,, and vice versa.

For A =0, Tv*(Q,) =0 € Q, and vice versa.



Example
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Example
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Example

* 4 ¥
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(i) p1 =0, 2 = —pi3 (i) pa = —ps, e =0



Example

(i) p1 € Ry o = p3

(i) pa = ps, ps € R



Example

uy u

(i) p € R, pio = pis (i) pa = ps, pe € R

Particular application for equality constraints: design of experiments with
non-trivial concentration structure.



Thank You!
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