Harmony of Gröbner-Bases and Toric Fiber Products

Christian Haase

Joint with Kaie Kubjas \& Andreas Paffenholz

1. Polytope \Rightarrow Variety

$P \subset \mathbb{R}^{d}$
$P \cap \mathbb{Z}^{d}$
fiber products
GB's of TFP's
degree bounds

$$
\mathcal{A}=\left(P \cap \mathbb{Z}^{d}\right) \times 1
$$

$$
(r, s, t) \longmapsto \begin{array}{cccc}
p_{00} & p_{10} & p_{01} & p_{11} \\
(t, & r t, & s t, & r s t)
\end{array}
$$

point configuration

$$
\mathcal{A}=\left(P \cap \mathbb{Z}^{d}\right) \times 1
$$

homomorphism

$$
\left.\begin{array}{rl}
\mathbb{C}\left[\boldsymbol{p}_{i j}\right] & \rightarrow \mathbb{C}[r, s, t] \\
\boldsymbol{p}_{00} & \mapsto \\
\boldsymbol{p}_{10} & \mapsto \\
\boldsymbol{p}_{01} & \mapsto
\end{array}\right)
$$

point configuration

$$
\mathcal{A}=(P \times 1) \cap \mathbb{Z}^{d}
$$

Gröbnertoric

fiber products
GB's of TFP's
degree bounds
homomorphism

$$
\begin{aligned}
& \mathbb{C}\left[\boldsymbol{p}_{i j}\right] \rightarrow \mathbb{C}[r, s, t] \\
& p_{00} \mapsto t \\
& p_{10} \mapsto r t \\
& p_{01} \mapsto s t \\
& p_{11} \mapsto r s t
\end{aligned}
$$

binomial relation
$I_{P}=\left\langle p_{00} p_{11}-p_{01} p_{10}\right\rangle$

$$
\begin{aligned}
& \text { toric variety } \\
& \boldsymbol{X}_{P} \hookrightarrow \mathbb{P}^{4-1}
\end{aligned}
$$

toric ideals

- semi-stabile reduction of families over curves [Kempf et al. 1973]
- g-Theorem for simplicial polytopes [Stanley 1980]
- McKay correspondence [Batyrev 1999]
- weak factorization of birational morphisms
[Włodarczyk et al. 2003]
- log-linear statistical models

2. Toric Gröbner Bases

$$
\boldsymbol{I}_{P}=\left\langle\boldsymbol{p}_{00} \boldsymbol{p}_{11}-\boldsymbol{p}_{01} \boldsymbol{p}_{10}\right\rangle \text { has two Gröbner bases. }
$$

$$
\mathcal{G}_{1}=\underline{p_{00} p_{11}}-p_{01} p_{10}
$$

$$
\mathcal{G}_{2}=p_{00} p_{11}-\underline{p_{01} p_{10}}
$$

Theorem [Kapranov, Sturmfels, Zelevinski 1992]
I_{P} has a square-free initial ideal

II

\boldsymbol{P} has a regular unimodular triangulation
In that case, the Gröbner basis can be read off from the triangulation.

Gröbnertoric

fiber products

GB's of TFP's
degree bounds

$$
\begin{aligned}
& \frac{u w}{u z}-v^{2}, \underline{u y}-v x \\
& \frac{u y}{w x}-v y, w y \\
& \underline{w z}-y^{2}
\end{aligned}
$$

```
polytope }=>\mathrm{ variety
```


Gröbnertoric

fiber products

GB's of TFP's
degree bounds

$$
\begin{aligned}
& \frac{u w}{u z}-v^{2}, \underline{u y}-v x \\
& \underline{u z}-v y, \underline{v z}-w y \\
& \underline{w x}-v y, \underline{x z}-y^{2}
\end{aligned}
$$

$$
x y z-w^{3}
$$

```
polytope }=>\mathrm{ variety
```


Gröbnertoric

fiber products

GB's of TFP's
degree bounds

$$
\begin{aligned}
& \frac{u w}{u z}-v^{2}, \underline{u y}-v x \\
& \frac{u z}{w}-v y, \underline{v z}-w y \\
& \underline{w}-v y, \underline{x z}-y^{2}
\end{aligned}
$$

$$
x y z-w^{3}
$$

```
polytope }=>\mathrm{ variety
```


Gröbnertoric

fiber products

GB's of TFP's
degree bounds

$$
\begin{aligned}
& \frac{u w}{u z}-v^{2}, \underline{u y}-v x \\
& \underline{u z}-v y, \underline{v z}-w y \\
& \underline{w x}-v y, \underline{x z}-y^{2}
\end{aligned}
$$

$$
x y z-w^{3}
$$

$\underline{x y z}-w^{3}$

```
polytope }=>\mathrm{ variety
```


Gröbnertoric

fiber products

GB's of TFP's
degree bounds

$$
\begin{aligned}
& \frac{u w}{u z}-v^{2}, \underline{u y}-v x \\
& \frac{u z}{w x}-v y, \underline{v z}-w y \\
& \underline{w}-\underline{x z}-y^{2}
\end{aligned}
$$

$$
x y z-w^{3}
$$

$\underline{x y z}-w^{3}$
$11 / 847$

Example [Ohsugi, Hibi 1999]

\boldsymbol{I}_{P} without square-free initial ideal.

$\operatorname{dim} P=\operatorname{dim} X_{P}=9, X_{P} \subset \mathbb{P}^{14}$

Proof:

$$
\begin{aligned}
& G r_{G}=\left\{x_{8} x_{12} x_{15}-x_{9} x_{11} x_{13}, x_{6} x_{11} x_{14}-x_{7} x_{12} x_{15}, x_{6} x_{8} x_{14}-x_{7} x_{9} x_{13},\right. \\
& x_{4} x_{13} x_{15}-x_{5} x_{11} x_{14}, x_{4} x_{9} x_{13}^{2}-x_{5} x_{8} x_{12} x_{14}, x_{4} x_{8} x_{12} x_{15}^{2}-x_{5} x_{9} x_{11}^{2} x_{14}, \\
& x_{4} x_{6} x_{13}-x_{5} x_{7} x_{12}, x_{4} x_{6} x_{8} x_{15}-x_{5} x_{7} x_{9} x_{11}, x_{4} x_{6}^{2} x_{8} x_{14}-x_{5} x_{7}^{2} x_{9} x_{12}, \\
& x_{2} x_{12} x_{14}-x_{3} x_{13} x_{15}, x_{2} x_{9} x_{11} x_{14}-x_{3} x_{8} x_{15}^{2}, x_{2} x_{8} x_{12}^{2} x_{14}-x_{3} x_{9} x_{11} x_{13}^{2} \\
& x_{2} x_{7} x_{12}^{2}-x_{3} x_{6} x_{11} x_{13}, x_{2} x_{7} x_{9} x_{12}-x_{3} x_{6} x_{8} x_{15}, x_{2} x_{7} x_{9}^{2} x_{11} x_{13}-x_{3} x_{6} x_{8}^{2} x_{15}^{2} \\
& x_{2} x_{7}^{2} x_{9} x_{12}^{2}-x_{3} x_{6}^{2} x_{8} x_{11} x_{14}, x_{2} x_{6} x_{11} x_{14}^{2}-x_{3} x_{7} x_{13} x_{15}^{2}, x_{2} x_{4} x_{12}-x_{3} x_{5} x_{11} \\
& x_{2} x_{4} x_{9} x_{13}-x_{3} x_{5} x_{8} x_{15}, x_{2} x_{4} x_{6} x_{14}-x_{3} x_{5} x_{7} x_{15}, x_{2} x_{4}^{2} x_{9} x_{13}^{2}-x_{3} x_{5}^{2} x_{8} x_{11} x_{14} \\
& x_{2} x_{4}{ }^{2} x_{6} x_{13}-x_{3} x_{5}^{2} x_{7} x_{11}, x_{2} x_{4}{ }^{2} x_{6}^{2} x_{8} x_{14}-x_{3} x_{5}^{2} x_{7}^{2} x_{9} x_{11}, \\
& x_{2}^{2} x_{4} x_{9} x_{12} x_{14}-x_{3}^{2} x_{5} x_{8} x_{15}^{2}, x_{1} x_{12} x_{14}-x_{10} x_{11} x_{13}, x_{1} x_{9} x_{14}-x_{8} x_{10} x_{15} \\
& x_{1} x_{7} x_{12}^{2} x_{15}-x_{6} x_{10} x_{11}^{2} x_{13}, x_{1} x_{7} x_{9} x_{12}-x_{6} x_{8} x_{10} x_{11}, x_{1} x_{7} x_{9}^{2} x_{13}-x_{6} x_{8}^{2} x_{10} x_{15} \\
& x_{1} x_{6} x_{14}^{2}-x_{7} x_{10} x_{13} x_{15}, \quad x_{1} x_{5} x_{12} x_{14}^{2}-x_{4} x_{10} x_{13}^{2} x_{15} \\
& x_{1} x_{5} x_{7}^{2} x_{9}^{2} x_{12}-x_{4} x_{6}^{2} x_{8}^{2} x_{10} x_{15}, x_{1} x_{4} x_{12} x_{15}-x_{5} x_{10} x_{11}^{2} \\
& x_{1} x_{4} x_{9} x_{13}-x_{5} x_{8} x_{10} x_{11}, x_{1} x_{4} x_{9}^{2} x_{13}^{2}-x_{5} x_{8}^{2} x_{10} x_{12} x_{15}, x_{1} x_{4} x_{6} x_{14}-x_{5} x_{7} x_{10} x_{11} \\
& x_{1} x_{4} x_{6}^{2} x_{14}^{2}-x_{5} x_{7}^{2} x_{10} x_{12} x_{15}, x_{1} x_{4}^{2} x_{6} x_{13} x_{15}-x_{5}^{2} x_{7} x_{10} x_{11}{ }^{2} \text {, } \\
& x_{1} x_{3} x_{15}-x_{2} x_{10} x_{11}, x_{1} x_{3} x_{9} x_{13}-x_{2} x_{8} x_{10} x_{12} \text {, } \\
& x_{1} x_{3} x_{6} x_{14}-x_{2} x_{7} x_{10} x_{12}, x_{1} x_{3} x_{5} x_{14}-x_{2} x_{4} x_{10} x_{13} \text {, } \\
& x_{1} x_{3} x_{5} x_{7} x_{9}-x_{2} x_{4} x_{6} x_{8} x_{10}, x_{1} x_{3}{ }^{2} x_{6} x_{13} x_{15}-x_{2}{ }^{2} x_{7} x_{10} x_{12}{ }^{2} \text {, } \\
& x_{1} x_{3}^{2} x_{5} x_{15}-x_{2}^{2} x_{4} x_{10} x_{12}, x_{1} x_{3}^{2} x_{5}^{2} x_{7} x_{15}-x_{2}^{2} x_{4}^{2} x_{6} x_{10} x_{13} \text {, } \\
& x_{1}{ }^{2} x_{4} x_{9} x_{12} x_{14}-x_{5} x_{8} x_{10}{ }^{2} x_{11}{ }^{2}, x_{1}{ }^{2} x_{3} x_{9} x_{14}-x_{2} x_{8} x_{10}{ }^{2} x_{11} \text {, } \\
& x_{1}{ }^{2} x_{3} x_{7} x_{9}{ }^{2} x_{13}-x_{2} x_{6} x_{8}{ }^{2} x_{10}{ }^{2} x_{11}, x_{1}{ }^{2} x_{3} x_{6} x_{14}{ }^{2}-x_{2} x_{7} x_{10}{ }^{2} x_{11} x_{13} \text {, } \\
& \left.x_{1}{ }^{2} x_{3}{ }^{2} x_{5} x_{9} x_{14}-x_{2}^{2} x_{4} x_{8} x_{10}{ }^{2} x_{12}\right\} \text {. }
\end{aligned}
$$

regular
polytope \Rightarrow variety

Gröbnertoric
fiber products

GB's of TFP's
degree bounds
lattice points/variables

weights at
regular triangulation

regular
polytope \Rightarrow variety

Gröbnertoric
fiber products

GB's of TFP's
degree bounds
lattice points/variables

weights at
regular triangulation

regular
polytope \Rightarrow variety

Gröbnertoric
fiber products

GB's of TFP's
degree bounds
lattice points/variables

weights at
regular triangulation

regular
polytope \Rightarrow variety

Gröbnertoric
fiber products

GB's of TFP's
degree bounds
lattice points/variables

weights at
regular triangulation

regular
weights at
lattice points/variables

regular triangulation

not regular

unimodular

Definition

A lattice simplex $\boldsymbol{P} \subset \mathbb{R}^{d}$ is unimodular if

$$
\operatorname{vol} P=1 / d!
$$

A triangulation is unimodular if all its simplices are.

Gröbnertoric

fiber products

GB's of TFP's

not
unimodular
$\left|\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|=2$

Positive Examples

- smooth surfaces [Bruns, Gubeladze, Trung '97]
- order polytopes [Santos '97, Ohsugi \& Hibi '01]
- root systems [Ohsugi \& Hibi '01]
- smooth, all lattice points vertices [造 '04]
- many smooth Fano varieties [Pechnik, Paffenholz '04]
- Veronesoid embeddings
[Stanley '77, Sturmfels '96, Lam, Postnikov '05]
- smooth 3×3 transportation polytopes
[感, Paffenholz '06]

3. Toric Fiber Products

Definition [Sullivant 2007]

Suppose

$$
P \xrightarrow{\pi} Q \stackrel{\pi^{\prime}}{\leftrightarrows} P^{\prime}
$$

are lattice preserving polytope projections. Then the fiber product $\boldsymbol{P} \times{ }_{Q} \boldsymbol{P}^{\prime}$ is the polytope

$$
\left\{\left(p, p^{\prime}\right) \in P \times P^{\prime}: \pi(p)=\pi^{\prime}\left(p^{\prime}\right)\right\}
$$

Gröbnertoric
fiber products
GB's of TFP's
degree bounds

Definition [Sullivant 2007]

Suppose

$$
P \xrightarrow{\pi} Q \stackrel{\pi^{\prime}}{\leftrightarrows} P^{\prime}
$$

are lattice preserving polytope projections. Then the fiber product $\boldsymbol{P} \times{ }_{Q} \boldsymbol{P}^{\prime}$ is the polytope

$$
\left\{\left(p, p^{\prime}\right) \in P \times P^{\prime}: \pi(p)=\pi^{\prime}\left(p^{\prime}\right)\right\}
$$

Example [Buczyńska, Wisniewski 2009]

Binary Jukes-Cantor models for trivalent trees (and other group based models).

$$
T=(V, E) \text { trivalent tree with } V=L \cup N \text {. }
$$

$$
\begin{aligned}
P:=\left\{x \in\{0,1\}^{E}:\right. & x_{i} \leq x_{j}+x_{k} \\
& x_{i}+x_{j}+x_{k} \text { even } \\
& \text { for all } T \hookleftarrow \downarrow\}
\end{aligned}
$$

Example [Buczyńska, Wisniewski 2009]

Binary Jukes-Cantor models for trivalent trees (and other group based models).

$$
T=(V, E) \text { trivalent tree with } V=L \cup N
$$

$\boldsymbol{P}:=\operatorname{conv}\left\{\mathbb{1}_{\boldsymbol{E}^{\prime}}: \boldsymbol{E}^{\prime} \subset \boldsymbol{E}\right.$ joins even subset $\left.\boldsymbol{L}^{\prime} \subseteq \boldsymbol{L}\right\}$

4. Gröbner-Bases for Toric Fiber Products

$$
P \xrightarrow{\pi} Q \stackrel{\pi^{\prime}}{\longleftrightarrow} P^{\prime} \text { lattice preserving projections }
$$

Theorem [会, Kubjas, Paffenholz 2010?]
Q with regular unimodular triangulation \mathcal{S}, \boldsymbol{P} with regular unimodular triangulation refining $\pi^{*} \mathcal{S}$, P^{\prime} with regular unimodular triangulation refining $\pi^{* *} \mathcal{S}$ then $\boldsymbol{P} \times{ }_{Q} \boldsymbol{P}^{\prime}$ has a regular unimodular triangulation.

$\boldsymbol{P} \xrightarrow{\pi} \Delta \stackrel{\pi^{\prime}}{\longleftrightarrow} \boldsymbol{P}^{\prime}$ lattice preserving projections

Corollary [Sullivant 2007]
\boldsymbol{P} and \boldsymbol{P}^{\prime} with regular unimodular triangulations, then $\boldsymbol{P} \times{ }_{\Delta} \boldsymbol{P}^{\prime}$ has a regular unimodular triangulation.
polytope \Rightarrow variety

Gröbnertoric
fiber products
degree bounds

pull-back subdivisions $\pi^{*} \Delta$

polytope \Rightarrow variety

Gröbnertoric
fiber products

GB's of TFP's
degree bounds

integral
not integral

Chimney-Lemma [Dais, 酉, Ziegler 2001]
Q with unimodular triangulation \mathcal{T}, $\operatorname{dim} P=\operatorname{dim} Q+1$, then every full refinement of $\pi^{*} \mathcal{T}$ yields a unimodular triangulation.
polytope \Rightarrow variety

Gröbnertoric
fiber products
degree bounds

π

easy

```
polytope }=>\mathrm{ variety
```

Gröbnertoric
fiber products
degree bounds

not so easy

polytope \Rightarrow variety

Gröbnertoric
fiber products

GB's of TFP's
degree bounds

(push-forward subdivision $\pi_{*} \Delta$)

impossible

Gröbnertoric
fiber products
$\boldsymbol{P}, \boldsymbol{P}^{\prime}$ with regular unimodular triangulation,

$$
\begin{aligned}
& \searrow \\
& \text { subdivision of } \boldsymbol{P} \times \boldsymbol{P}^{\prime} \text { into } \\
& \text { products of unimodular simplices }
\end{aligned}
$$

unimodular triangulation of $\boldsymbol{P} \times \boldsymbol{P}^{\prime}$

Lemma

$\Delta_{d} \xrightarrow{\pi} \Delta_{d^{\prime \prime}} \stackrel{\pi^{\prime}}{\longleftrightarrow} \Delta_{d^{\prime}}$ lattice preserving projections, then $\boldsymbol{\Delta}_{d} \times$ $_{d_{d^{\prime \prime}}} \boldsymbol{\Delta}_{d^{\prime}}$ is integral and compressed.
polytope \Rightarrow variety

Gröbnertoric
fiber products

GB's of TFP's
degree bounds

5. Degree Bounds

```
polytope }=>\mathrm{ variety
Gröbnertoric
fiber products
...just kidding
```

GB's of TFP's

