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1. Polytope ⇒ Variety

p11

p00

p01

p10

p01

p00 p10

p11

P ⊂ Rd P ∩ Zd A = (P ∩ Zd)× 1

p00 p10 p01 p11

(r, s, t) 7−→ ( t, rt, st, rst)
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point configuration homomorphism

A = (P ∩ Zd)× 1

p01

p00 p10

p11

C[pij] → C[r, s, t]

p00 7→ t

p10 7→ rt

p01 7→ st

p11 7→ rst

linear relation[
0
0
1

]
+
[

1
1
1

]
=
[

0
1
1

]
+
[

1
0
1

]
binomial relation

IP = 〈p00p11 − p01p10〉

toric variety

XP ↪→ P4−1
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point configuration homomorphism

A = (P × 1) ∩ Zd

p01

p00 p10

p11

C[pij] → C[r, s, t]

p00 7→ t

p10 7→ rt

p01 7→ st

p11 7→ rst

linear relation[
0
0
1

]
+
[

1
1
1

]
=
[

0
1
1

]
+
[

1
0
1

] binomial relation

IP = 〈p00p11 − p01p10〉

toric variety

XP ↪→ P4−1
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toric ideals p11

p00

p01

p10

⇐⇒

• semi-stabile reduction of families over curves
[Kempf et al. 1973]

• g-Theorem for simplicial polytopes [Stanley 1980]

• McKay correspondence [Batyrev 1999]

• weak factorization of birational morphisms
[W lodarczyk et al. 2003]

• log-linear statistical models
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2. Toric Gröbner Bases

IP = 〈p00p11 − p01p10〉 has two Gröbner bases.

G1 = p00p11 − p01p10 G2 = p00p11 − p01p10

p11
p01

p10p00

0
1

0

1 1

p11
p01

p10

0

0

1

p00
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Theorem [Kapranov, Sturmfels, Zelevinski 1992]

IP has a square-free initial ideal

m
P has a regular unimodular triangulation

In that case, the Gröbner basis can be read off from the
triangulation.

u w

x z

v

y

uw − v2 , uy − vx,
uz − vy , vz − wy,
wx− vy, xz − y2
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u w

x z

v

y

z

x

w
y

uw − v2 , uy − vx,
uz − vy , vz − wy,
wx− vy, xz − y2

xyz − w3
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x

w

z

u v

y

z

x

w
y

uw − v2 , uy − vx,
uz − vy , vz − wy,
wx− vy, xz − y2

xyz − w3
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x

w

z

u v

y

z

x

w
y

uw − v2 , uy − vx,
uz − vy , vz − wy,
wx− vy, xz − y2

xyz − w3
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x

w

z

u v

y x

z

y
w

uw − v2 , uy − vx,
uz − vy , vz − wy,
wx− vy, xz − y2

xyz − w3
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Example [Ohsugi, Hibi 1999]

IP without square-free initial ideal.

dimP = dimXP = 9, XP ⊂ P14

Proof:

202 H. Ohsugi and T. Hibi

the above three “⇒”? First, no counterexample of an integral polytope is known for the
converse of (i)⇒ (ii). Second, there exist many integral polytopes which disprove the
converse of (ii)⇒ (iii). However, we do not know a(0,1)-polytope which disproves the
converse of (ii)⇒ (iii). Third, no counterexample of an integral polytope is known for
the converse of (iii)⇒ (iv).

The purpose of the present paper is to give thefirst normal (0,1)-polytope which
possesses no unimodular regular triangulation. We refer the reader to, e.g., [2] for fun-
damental definitions and results on, e.g., initial ideals, toric ideals, Gr¨obner bases, and
regular triangulations.

Let G be a finite connected graph on the vertex setV(G) = {1, . . . ,d} having no loop
and no multiple edge. Ife = {i, j } is an edge ofG joining i ∈ V(G) with j ∈ V(G),
then we defineρ(e) ∈ Rd by ρ(e) = ei + ej . Here,ei is thei th unit coordinate vector
in Rd. We writePG ⊂ Rd for the convex hull of the finite set{ρ(e); e is an edge of
G} ⊂ Rd and callPG theedge polytopeof G. It is known, e.g., [1, Corollary 2.3] thatPG

is normal if and only if, for arbitrary two odd cyclesC andC′ in G having no common
vertex, there exists an edge ofG joining a vertex ofC with a vertex ofC′. It follows
from [2, Corollary 8.9] that no regular triangulation ofPG is unimodular if and only if
no initial ideal of the toric idealIG of K [PG] is square-free.

Throughout the remainder of the paper, letG denote the finite connected graph with
10 vertices and 15 edges below.

Then, dimPG = 9 and the normalized volume ofPG is equal to 56. By virtue of the
above combinatorial criterion for the normality of edge polytopes, we easily see that
PG is normal. Now, in order to show that no initial ideal ofIG is square-free, we first
compute the Graver basis ofIG by [2, Algorithm 7.2]:

GrG = {x8x12x15− x9x11x13, x6x11x14− x7x12x15, x6x8x14− x7x9x13,

x4x13x15− x5x11x14, x4x9x13
2− x5x8x12x14, x4x8x12x15

2− x5x9x11
2x14,

x4x6x13− x5x7x12, x4x6x8x15− x5x7x9x11, x4x6
2x8x14− x5x7

2x9x12,

x2x12x14− x3x13x15, x2x9x11x14− x3x8x15
2, x2x8x12

2x14− x3x9x11x13
2,

x2x7x12
2− x3x6x11x13, x2x7x9x12− x3x6x8x15, x2x7x9

2x11x13− x3x6x8
2x15

2,

x2x7
2x9x12

2− x3x6
2x8x11x14, x2x6x11x14

2− x3x7x13x15
2, x2x4x12− x3x5x11,

x2x4x9x13− x3x5x8x15, x2x4x6x14− x3x5x7x15, x2x4
2x9x13

2− x3x5
2x8x11x14,

x2x4
2x6x13− x3x5

2x7x11, x2x4
2x6

2x8x14− x3x5
2x7

2x9x11,

x2
2x4x9x12x14− x3

2x5x8x15
2, x1x12x14− x10x11x13, x1x9x14− x8x10x15,

x1x7x12
2x15− x6x10x11

2x13, x1x7x9x12− x6x8x10x11, x1x7x9
2x13− x6x8

2x10x15,

x1x6x14
2− x7x10x13x15, x1x5x12x14

2− x4x10x13
2x15,
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x1x5x7
2x9

2x12− x4x6
2x8

2x10x15, x1x4x12x15− x5x10x11
2,

x1x4x9x13− x5x8x10x11, x1x4x9
2x13

2− x5x8
2x10x12x15, x1x4x6x14− x5x7x10x11,

x1x4x6
2x14

2− x5x7
2x10x12x15, x1x4

2x6x13x15− x5
2x7x10x11

2,

x1x3x15− x2x10x11, x1x3x9x13− x2x8x10x12,

x1x3x6x14− x2x7x10x12, x1x3x5x14− x2x4x10x13,

x1x3x5x7x9− x2x4x6x8x10, x1x3
2x6x13x15− x2

2x7x10x12
2,

x1x3
2x5x15− x2

2x4x10x12, x1x3
2x5

2x7x15− x2
2x4

2x6x10x13,

x1
2x4x9x12x14− x5x8x10

2x11
2, x1

2x3x9x14− x2x8x10
2x11,

x1
2x3x7x9

2x13− x2x6x8
2x10

2x11, x1
2x3x6x14

2− x2x7x10
2x11x13,

x1
2x3

2x5x9x14− x2
2x4x8x10

2x12}.
It follows that each of the two terms of each of the above five underlined binomials
can be divided by no term of the binomials belonging toGrG. Hence, with respect to
an arbitrary term order, each of the five underlined binomials can be reduced by no
binomial belonging toGrG. Since, in general, the Graver basis contains the universal
Gröbner basis, every reduced Gr¨obner basis ofIG is a subset ofGrG. Thus, with respect
to an arbitrary term order, all of the five underlined binomials must appear in the reduced
Gröbner basis ofIG. Hence, the toric idealIG has a square-free initial ideal only if we
can find a term orderÂ such that all of the initial terms of the five underlined binomials
are simultaneously square-free. Now, suppose that there exists such a term orderÂ and
choose a nonnegative weight vectorω = (ω1, . . . , ω15) which representsÂ. Since the
initial terms of the five underlined binomials are simultaneously square-free, the weight
vectorω satisfies the following five simultaneous inequalities:


ω5 + ω8 + ω12 + ω14 > ω4 + ω9 + 2ω13,

ω2 + ω9 + ω11 + ω14 > ω3 + ω8 + 2ω15,

ω3 + ω6 + ω11 + ω13 > ω2 + ω7 + 2ω12,

ω7 + ω10 + ω13 + ω15 > ω1 + ω6 + 2ω14,

ω1 + ω4 + ω12 + ω15 > ω5 + ω10 + 2ω11.

Since the sum of the left-hand sides of the five inequalities is equal to that of the right-
hand sides, the above simultaneous inequalities have no solution inR15. Hence, there
exists no term order such that all of the initial terms of the five underlined binomials in
GrG are simultaneously square-free. Thus, no initial ideal of the toric idealIG can be
square-free.

In [1] we show that all normal edge polytopesPG of finite graphsG possess unimod-
ular coverings.

Remark. The edge polytopePG discussed abovedoespossess a unimodular triangu-
lation. This fact was first verified by Firla and Ziegler by means of an integer program-
ming approach. Hence, this edge polytope yields the only known counterexample for
the converse of (i)⇒ (ii). No other example of an integral polytope which possesses
a unimodular triangulation and which possesses no unimodular regular triangulation is
known. Moreover, an analysis by De Loera (using his program PUNTOS) shows even
stranger behavior of this edge polytope: Neither a triangulation with the maximal number

�
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regular

weights at
lattice points/variables

2 1

1 2

0

0

regular triangulation

u v w

x
y

z

1

2

1

0
0

2
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Gröbnertoric

fiber products

GB’s of TFP’s

degree bounds

16/847

regular
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1 2
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regular triangulation

u v w
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Gröbnertoric

fiber products

GB’s of TFP’s

degree bounds

17/847

regular

weights at
lattice points/variables

2 1

1 2

0

0

regular triangulation not regular

u v w

x
y

z

1

2

1

0
0

2
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unimodular

Definition
A lattice simplex P ⊂ Rd is unimodular if

volP = 1/d! .

A triangulation is unimodular if all its simplices are.

unimodular not not
unimodular unimodular

| 2 1
1 2 | = 3

∣∣∣ 0 1 1
1 0 1
1 1 0

∣∣∣ = 2
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Positive Examples

• smooth surfaces [Bruns, Gubeladze, Trung ’97]

• order polytopes [Santos ’97, Ohsugi & Hibi ’01]

• root systems [Ohsugi & Hibi ’01]

• smooth, all lattice points vertices [ ’04]

• many smooth Fano varieties [ , Piechnik, Paffenholz ’04]

• Veronesoid embeddings
[Stanley ’77, Sturmfels ’96, Lam, Postnikov ’05]

• smooth 3× 3 transportation polytopes

[ , Paffenholz ’06]
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3. Toric Fiber Products

Definition [Sullivant 2007]
Suppose

P
π−→ Q

π′←− P ′

are lattice preserving polytope projections. Then the fiber

product P ×Q P ′ is the polytope

{(p, p′) ∈ P × P ′ : π(p) = π′(p′)} .

P × P ′

P Q

P ′
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Definition [Sullivant 2007]
Suppose

P
π−→ Q

π′←− P ′

are lattice preserving polytope projections. Then the fiber

product P ×Q P ′ is the polytope

{(p, p′) ∈ P × P ′ : π(p) = π′(p′)} .

P

P ′

Q

P ×Q P
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Example [Buczyńska, Wisniewski 2009]
Binary Jukes-Cantor models for trivalent trees (and other

group based models).

xi

xj xk

T = (V,E) trivalent tree with V = L ∪N .

P :=
{
x ∈ {0, 1}E : xi ≤ xj + xk

xi + xj + xk even

for all T ←↩
}
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Example [Buczyńska, Wisniewski 2009]
Binary Jukes-Cantor models for trivalent trees (and other

group based models).

T = (V,E) trivalent tree with V = L ∪N .

P := conv
{
1E′ : E′ ⊂ E joins even subset L′ ⊆ L

}
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4. Gröbner-Bases for Toric Fiber Products

P
π−→ Q

π′←− P ′ lattice preserving projections

Theorem [ , Kubjas, Paffenholz 2010?]

Q with regular unimodular triangulation S,

P with regular unimodular triangulation refining π∗S,

P ′ with regular unimodular triangulation refining π′∗S
then P ×Q P ′ has a regular unimodular triangulation.
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P
π−→ ∆

π′←− P ′ lattice preserving projections

Corollary [Sullivant 2007]
P and P ′ with regular unimodular triangulations,

then P ×∆ P
′ has a regular unimodular triangulation.
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pull-back subdivisions π∗∆

π π

integral not integral
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Chimney-Lemma [Dais, , Ziegler 2001]
Q with unimodular triangulation T ,
dimP = dimQ+ 1,

then every full refinement of π∗T yields a
unimodular triangulation.

π
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easy

π
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Gröbnertoric

fiber products

GB’s of TFP’s

degree bounds

29/847

not so easy

π

(push-forward subdivision π∗∆)
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impossible

π
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products

P , P ′ with regular
unimodular triangulation,

↘

subdivision of P × P ′ into
products of unimodular simplices

↘

unimodular
triangulation

of P × P ′
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Lemma
∆d

π−→ ∆d′′
π′

←− ∆d′ lattice preserving projections,

then ∆d ×∆d′′ ∆d′ is integral and compressed.

�
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5. Degree Bounds

. . . just kidding
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