Toric ideals of small matroids are generated in degree 2

Serkan Hoșten and Ralf Youtz

San Francisco State University

Harmony of Gröbner Bases and Modern Industrial Society July 2, 2010

Old and New Results

Hoșten and Youtz Toric ideals of small matroids

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

æ

999

Theorem (HY 10)

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

Theorem (HY 10)

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

Theorem (Ohsugi-Hibi 00, Blum 01, HY 10)

The toric ideal of a matroid of rank 2 is generated by quadrics.

Theorem (HY 10)

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

Theorem (Ohsugi-Hibi 00, Blum 01, HY 10)

The toric ideal of a matroid of rank 2 is generated by quadrics.

Theorem (Kashiwabara 10)

The toric ideal of a matroid of rank 3 is generated by quadrics.

Definition

A matroid *M* is a pair (E, B) where *E* is a finite set and *B* is a collection of subsets of *E* satisfying

- B1 $\mathcal{B} \neq \emptyset$ and no member of \mathcal{B} is a subset of another,
- B2 If $B_1, B_2 \in \mathcal{B}$ and $e \in B_1 B_2$, then there exists $f \in B_2$ such that $B_1 e + f \in \mathcal{B}$.

ground set := E size := |E| basis := $B_i \in \mathcal{B}$ rank := $|B_i|$ for all i

Definition

A matroid *M* is a pair (E, B) where *E* is a finite set and *B* is a collection of subsets of *E* satisfying

B1 $\mathcal{B} \neq \emptyset$ and no member of \mathcal{B} is a subset of another,

B2 If $B_1, B_2 \in \mathcal{B}$ and $e \in B_1 - B_2$, then there exists $f \in B_2$ such that $B_1 - e + f \in \mathcal{B}$.

ground set := E size := |E| basis := $B_i \in \mathcal{B}$ rank := $|B_i|$ for all i

B2 is the basis exchange axiom.

Example

 $M = (E, B), E = \{1, 2, 3, 4, 5, 6\}, \\B = \{12, 14, 24, 25, 26, 45, 46\} (ij \text{ denotes } \{i, j\})$

For $12, 46 \in \mathcal{B}, 12 - 2 + 4 = 14 \in \mathcal{B}$.

æ

Example

$$M = (E, B), \quad E = \{1, 2, 3, 4, 5, 6\}, \\B = \{12, 14, 24, 25, 26, 45, 46\} \quad (ij \text{ denotes } \{i, j\})$$

For $12, 46 \in \mathcal{B}, 12 - 2 + 4 = 14 \in \mathcal{B}$.

M is a graphic matroid.

.

@▶ ★ 注▶

글 🕨 🖂 글

Matroids

Example

$$E = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\}$$

 $\mathcal{B} = \{ \text{ all bases of this vector configuration } \}$

A ►

4

→ 문 → → 문 →

Э

Let M = (E, B) be a matroid and $B_1, B_2 \in B$. For every $e \in B_1$ there exists $f \in B_2$ such that $D_1 = B_1 - e + f$ and $D_2 = B_2 - f + e$ are bases.

- 4 同 ト 4 臣 ト 4 臣 ト

Let M = (E, B) be a matroid and $B_1, B_2 \in B$. For every $e \in B_1$ there exists $f \in B_2$ such that $D_1 = B_1 - e + f$ and $D_2 = B_2 - f + e$ are bases.

Definition

 $\{B_1, B_2\} \leftrightarrow \{D_1, D_2\}$ as in the Proposition is called a double swap.

Let M = (E, B) be a matroid and $B_1, B_2 \in B$. For every $e \in B_1$ there exists $f \in B_2$ such that $D_1 = B_1 - e + f$ and $D_2 = B_2 - f + e$ are bases.

Definition

 $\{B_1, B_2\} \leftrightarrow \{D_1, D_2\}$ as in the Proposition is called a double swap.

Example

 $E = \{1, 2, 3, 4, 5, 6\}, B = \{12, 14, 24, 25, 26, 45, 46\}$

 $\{14,25\} \leftrightarrow \{12,45\}$ is a double swap, but $\{14,25\} \leftrightarrow \{15,24\}$ is not a double swap.

・ロト ・回ト ・ヨト ・ヨト

Conjecture (Neil White, 1977)

Let M = (E, B) be a matroid. For every $m \ge 2$, any two collections of bases $\{B_1, B_2, \ldots, B_m\}$ and $\{D_1, D_2, \ldots, D_m\}$ such that $\bigcup B_i = \bigcup D_i$ can be connected by double swaps.

Hoșten and Youtz Toric ideals of small matroids

< ≣⇒

æ

-≣->

•
$$M = (E, B), E = \{1, 2, ..., n\}, B = \{B_1, ..., B_m\}$$

< ≣⇒

æ

-≣->

•
$$M = (E, \mathcal{B}), E = \{1, 2, \dots, n\}, \mathcal{B} = \{B_1, \dots, B_m\}$$

• $\pi : k[x_{B_1}, \dots, x_{B_m}] \longrightarrow k[t_1, \dots, t_n]$ where $\pi(x_{B_j}) = \prod_{i \in B_j} t_i$.

æ

A ₽

< E > < E >

- $M = (E, B), E = \{1, 2, ..., n\}, B = \{B_1, ..., B_m\}$
- $\pi : k[x_{B_1}, \ldots, x_{B_m}] \longrightarrow k[t_1, \ldots, t_n]$ where $\pi(x_{B_j}) = \prod_{i \in B_j} t_i$.
- The toric ideal of M is $I_M = \ker(\pi)$.

- $M = (E, B), E = \{1, 2, ..., n\}, B = \{B_1, ..., B_m\}$
- $\pi : k[x_{B_1}, \ldots, x_{B_m}] \longrightarrow k[t_1, \ldots, t_n]$ where $\pi(x_{B_j}) = \prod_{i \in B_j} t_i$.
- The toric ideal of M is $I_M = \ker(\pi)$.
- $I_M = \langle x_{B_{i_1}} x_{B_{i_2}} \cdots x_{B_{i_k}} x_{B_{j_1}} x_{B_{j_2}} \cdots x_{B_{j_k}} : \bigcup_{s=1}^k B_{i_s} = \bigcup_{s=1}^k B_{j_s} \rangle.$

•
$$M = (E, B), E = \{1, 2, ..., n\}, B = \{B_1, ..., B_m\}$$

- $\pi : k[x_{B_1}, \ldots, x_{B_m}] \longrightarrow k[t_1, \ldots, t_n]$ where $\pi(x_{B_j}) = \prod_{i \in B_j} t_i$.
- The toric ideal of M is $I_M = \ker(\pi)$.

•
$$I_M = \langle x_{B_{i_1}} x_{B_{i_2}} \cdots x_{B_{i_k}} - x_{B_{j_1}} x_{B_{j_2}} \cdots x_{B_{j_k}} : \bigcup_{s=1}^k B_{i_s} = \bigcup_{s=1}^k B_{j_s} \rangle.$$

Conjecture (White's conjecture translated)

The toric ideal I_M is generated by $x_B x_{B'} - x_D x_{D'}$ where $\{B, B'\} \leftrightarrow \{D, D'\}$ is a double swap.

Conjecture

The toric ideal I_M is generated by quadratic binomials.

Conjecture

The toric ideal I_M is generated by quadratic binomials.

Conjecture

The toric ideal I_M has a Gröbner basis consisting of (binomials corresponding to) double swaps.

Conjecture

The toric ideal I_M is generated by quadratic binomials.

Conjecture

The toric ideal I_M has a Gröbner basis consisting of (binomials corresponding to) double swaps.

Conjecture

The toric ideal I_M has a Gröbner basis consisting of quadratic binomials.

- Quadratic generators \longrightarrow few generators
- Quadratic Gröbner basis consisting of double swaps → unimodular triangulation of matroid polytopes (still open; see David Haws' work)
- It fits nicely to other similar questions.
- The closure of torus orbit of a generic point K ∈ k^{r×n} in the Grassmannian G(r, n) is the toric variety corresponding to the matroid of bases of K.

白 ト イヨト イヨト

Theorem (Sturmfels 96)

If M is a uniform matroid then the double swaps form a Gröbner basis of I_{M} .

Theorem (Blasiak 08)

If M is a graphical matroid then I_M is generated by double swaps.

Theorem (Ohsugi-Hibi 00, Blum 01, HY 10)

If rank(M) = 2 then I_M is generated by double swaps (actually form a Gröbner basis).

Theorem (Kashiwabara 10)

If rank(M) = 3 then I_M is generated by double swaps.

イロト イヨト イヨト イヨト

æ

Mayhew and Royle (2008) have classified all non-isomorphic matroids on ≤ 9 elements.

r/n	0	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	1	1
1		1	2	3	4	5	6	7	8	9
2			1	3	7	13	23	37	58	87
3				1	4	13	38	108	325	1275
4					1	5	23	108	940	190214
÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷
Total	1	2	4	8	17	38	98	306	1724	383172

イロン イヨン イヨン イヨン

Э

 $I_{M^*} = I_M$ where M^* is the dual matroid of M.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 >

Э

 $I_{M^*} = I_M$ where M^* is the dual matroid of M.

After appr. four months of computation using a Perl script and 4ti2:

Theorem

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

 $I_{M^*} = I_M$ where M^* is the dual matroid of M.

After appr. four months of computation using a Perl script and 4ti2:

Theorem

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

There are at least 2.5×10^{12} matroids of rank 10.

Proposition (Blasiak 08)

Let b be binomial of degree $m \ge 3$ in I_M of a matroid M of rank r

$$b = x_{B_{i_1}} x_{B_{i_2}} \cdots x_{B_{i_m}} - x_{B_{j_1}} x_{B_{j_2}} \cdots x_{B_{j_m}}.$$

Then we get a new matroid M' of rank r on rm elements and a binomial

$$b' = x_{D_{i_1}} x_{D_{i_2}} \cdots x_{D_{i_m}} - x_{D_{j_1}} x_{D_{j_2}} \cdots x_{D_{j_m}}$$

where both $\{D_{i_1}, D_{i_2}, \ldots, D_{i_m}\}$ and $\{D_{j_1}, D_{j_2}, \cdots, D_{j_m}\}$ are partitions of the ground set of M'. Moreover, b is connected by double swaps of M if and only if b' is connected by double swaps of M'.

Follows from an easy argument using Blasiak's reduction. We illustrate for m = 4:

イロン イヨン イヨン イヨン

Э

5900

Follows from an easy argument using Blasiak's reduction. We illustrate for m = 4:

We need to connect 12345678 to 13254768.

御 と く ヨ と く ヨ と …

æ

- Follows from an easy argument using Blasiak's reduction. We illustrate for m = 4:
- We need to connect 12345678 to 13254768.
- Two double swaps: $(56,78) \leftrightarrow (57,68)$ or $(56,78) \leftrightarrow (67,58)$.

向下 イヨト イヨト

Sac

- Follows from an easy argument using Blasiak's reduction. We illustrate for m = 4:
- We need to connect 12345678 to 13254768.
- Two double swaps: $(56, 78) \leftrightarrow (57, 68)$ or $(56, 78) \leftrightarrow (67, 58)$.
- Two other double swaps: $(47, 68) \leftrightarrow (46, 78)$ or $(47, 68) \leftrightarrow (67, 48)$.

伺下 イヨト イヨト

Sac

イロン イヨン イヨン イヨン

∃ \$\\$<</p>\$\\$

We need to connect 123456789 to 124378569 or to 124357689 or to 147258369.

→ Ξ → < Ξ →</p>

We need to connect $123\,456\,789$ to $124\,378\,569$ or to $124\,357\,689$ or to $147\,258\,369$.

Kashiwabara's long argument can be replaced by our computations.

→ Ξ ► → Ξ ►

We need to connect $123\,456\,789$ to $124\,378\,569$ or to $124\,357\,689$ or to $147\,258\,369$.

Kashiwabara's long argument can be replaced by our computations.

The induction step uses a non-trivial matroid result which is a consequence of Matroid Partition Theorem.

ヨト イヨト イヨト

THANK YOU

Hosten and Youtz Toric ideals of small matroids

<ロト <四ト < 注ト < 注ト

æ

999