Toric ideals of small matroids are generated in degree 2

Serkan Hoșten and Ralf Youtz

San Francisco State University
Harmony of Gröbner Bases and Modern Industrial Society July 2, 2010

Old and New Results

```
4ロ>4吕 | 4 三
```


Old and New Results

Theorem (HY 10)

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

Old and New Results

Theorem (HY 10)

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

Theorem (Ohsugi-Hibi 00, Blum 01, HY 10)
The toric ideal of a matroid of rank 2 is generated by quadrics.

Old and New Results

Theorem (HY 10)

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

Theorem (Ohsugi-Hibi 00, Blum 01, HY 10)
The toric ideal of a matroid of rank 2 is generated by quadrics.

Theorem (Kashiwabara 10)

The toric ideal of a matroid of rank 3 is generated by quadrics.

Matroids

Definition

A matroid M is a pair (E, \mathcal{B}) where E is a finite set and \mathcal{B} is a collection of subsets of E satisfying
B1 $\mathcal{B} \neq \varnothing$ and no member of \mathcal{B} is a subset of another,
B2 If $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1}-B_{2}$, then there exists $f \in B_{2}$ such that $B_{1}-e+f \in \mathcal{B}$.
ground set $:=E$ size $:=|E| \quad$ basis $:=B_{i} \in \mathcal{B} \quad$ rank $:=\left|B_{i}\right|$ for all i

Matroids

Definition

A matroid M is a pair (E, \mathcal{B}) where E is a finite set and \mathcal{B} is a collection of subsets of E satisfying
B1 $\mathcal{B} \neq \varnothing$ and no member of \mathcal{B} is a subset of another,
B2 If $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1}-B_{2}$, then there exists $f \in B_{2}$ such that $B_{1}-e+f \in \mathcal{B}$.
ground set $:=E$ size $:=|E| \quad$ basis $:=B_{i} \in \mathcal{B} \quad$ rank $:=\left|B_{i}\right|$ for all i
B2 is the basis exchange axiom.

Matroids

Example

$M=(E, \mathcal{B}), \quad E=\{1,2,3,4,5,6\}$,
$\mathcal{B}=\{12,14,24,25,26,45,46\} \quad$ (ij denotes $\{i, j\}$)
For $12,46 \in \mathcal{B}, 12-2+4=14 \in \mathcal{B}$.

Matroids

Example

$M=(E, \mathcal{B}), \quad E=\{1,2,3,4,5,6\}$,
$\mathcal{B}=\{12,14,24,25,26,45,46\} \quad$ (ij denotes $\{i, j\}$)
For $12,46 \in \mathcal{B}, 12-2+4=14 \in \mathcal{B}$.

M is a graphic matroid.

Matroids

Example

$$
E=\left\{\binom{1}{0},\binom{0}{1},\binom{0}{0},\binom{1}{-2},\binom{-1}{0},\binom{-2}{0}\right\}
$$

$\mathcal{B}=\{$ all bases of this vector configuration $\}$

Double Swaps

Proposition

Let $M=(E, \mathcal{B})$ be a matroid and $B_{1}, B_{2} \in \mathcal{B}$. For every $e \in B_{1}$ there exists $f \in B_{2}$ such that $D_{1}=B_{1}-e+f$ and $D_{2}=B_{2}-f+e$ are bases.

Double Swaps

Proposition

Let $M=(E, \mathcal{B})$ be a matroid and $B_{1}, B_{2} \in \mathcal{B}$. For every $e \in B_{1}$ there exists $f \in B_{2}$ such that $D_{1}=B_{1}-e+f$ and $D_{2}=B_{2}-f+e$ are bases.

Definition

$\left\{B_{1}, B_{2}\right\} \leftrightarrow\left\{D_{1}, D_{2}\right\}$ as in the Proposition is called a double swap.

Double Swaps

Proposition

Let $M=(E, \mathcal{B})$ be a matroid and $B_{1}, B_{2} \in \mathcal{B}$. For every $e \in B_{1}$ there exists $f \in B_{2}$ such that $D_{1}=B_{1}-e+f$ and $D_{2}=B_{2}-f+e$ are bases.

Definition

$\left\{B_{1}, B_{2}\right\} \leftrightarrow\left\{D_{1}, D_{2}\right\}$ as in the Proposition is called a double swap.

Example

$E=\{1,2,3,4,5,6\}, \quad \mathcal{B}=\{12,14,24,25,26,45,46\}$
$\{14,25\} \leftrightarrow\{12,45\}$ is a double swap, but $\{14,25\} \leftrightarrow\{15,24\}$ is not a double swap.

White's Conjecture

```
Conjecture (Neil White, 1977)
Let M = (E,\mathcal{B})\mathrm{ be a matroid. For every m}\geq2\mathrm{ , any two collections of} bases \(\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}\) and \(\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}\) such that \(\cup B_{i}=\cup D_{i}\) can be connected by double swaps.
```


The Toric ideal of a Matroid and White's Conjecture

The Toric ideal of a Matroid and White's Conjecture

- $M=(E, \mathcal{B}), E=\{1,2, \ldots, n\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{m}\right\}$

The Toric ideal of a Matroid and White's Conjecture

- $M=(E, \mathcal{B}), E=\{1,2, \ldots, n\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{m}\right\}$
- $\pi: k\left[x_{B_{1}}, \ldots, x_{B_{m}}\right] \longrightarrow k\left[t_{1}, \ldots, t_{n}\right]$ where $\pi\left(x_{B_{j}}\right)=\prod_{i \in B_{j}} t_{i}$.

The Toric ideal of a Matroid and White's Conjecture

- $M=(E, \mathcal{B}), E=\{1,2, \ldots, n\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{m}\right\}$
- $\pi: k\left[x_{B_{1}}, \ldots, x_{B_{m}}\right] \longrightarrow k\left[t_{1}, \ldots, t_{n}\right]$ where $\pi\left(x_{B_{j}}\right)=\prod_{i \in B_{j}} t_{j}$.
- The toric ideal of M is $I_{M}=\operatorname{ker}(\pi)$.

The Toric ideal of a Matroid and White's Conjecture

- $M=(E, \mathcal{B}), E=\{1,2, \ldots, n\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{m}\right\}$
- $\pi: k\left[x_{B_{1}}, \ldots, x_{B_{m}}\right] \longrightarrow k\left[t_{1}, \ldots, t_{n}\right]$ where $\pi\left(x_{B_{j}}\right)=\prod_{i \in B_{j}} t_{j}$.
- The toric ideal of M is $I_{M}=\operatorname{ker}(\pi)$.
- $I_{M}=\left\langle x_{B_{i_{1}}} x_{B_{i_{2}}} \cdots x_{B_{i_{k}}}-x_{B_{j_{1}}} x_{B_{j_{2}}} \cdots x_{B_{j_{k}}}: \cup_{s=1}^{k} B_{i_{s}}=\cup_{s=1}^{k} B_{j_{s}}\right\rangle$.

The Toric ideal of a Matroid and White's Conjecture

- $M=(E, \mathcal{B}), E=\{1,2, \ldots, n\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{m}\right\}$
- $\pi: k\left[x_{B_{1}}, \ldots, x_{B_{m}}\right] \longrightarrow k\left[t_{1}, \ldots, t_{n}\right]$ where $\pi\left(x_{B_{j}}\right)=\prod_{i \in B_{j}} t_{i}$.
- The toric ideal of M is $I_{M}=\operatorname{ker}(\pi)$.
- $I_{M}=\left\langle x_{B_{i_{1}}} x_{B_{i_{2}}} \cdots x_{B_{i_{k}}}-x_{B_{j_{1}}} x_{B_{j_{2}}} \cdots x_{B_{j_{k}}}: \cup_{s=1}^{k} B_{i_{s}}=\cup_{s=1}^{k} B_{j_{s}}\right\rangle$.

Conjecture (White's conjecture translated)

The toric ideal I_{M} is generated by $x_{B} x_{B^{\prime}}-x_{D} x_{D^{\prime}}$ where $\left\{B, B^{\prime}\right\} \leftrightarrow\left\{D, D^{\prime}\right\}$ is a double swap.

Variants of White's conjecture

Conjecture

The toric ideal I_{M} is generated by quadratic binomials.

Variants of White's conjecture

Conjecture

The toric ideal I_{M} is generated by quadratic binomials.

Conjecture

The toric ideal I_{M} has a Gröbner basis consisting of (binomials corresponding to) double swaps.

Variants of White's conjecture

Conjecture

The toric ideal I_{M} is generated by quadratic binomials.

Conjecture

The toric ideal I_{M} has a Gröbner basis consisting of (binomials corresponding to) double swaps.

Conjecture

The toric ideal I_{M} has a Gröbner basis consisting of quadratic binomials.

Why?

- Quadratic generators \longrightarrow few generators
- Quadratic Gröbner basis consisting of double swaps \longrightarrow unimodular triangulation of matroid polytopes (still open; see David Haws' work)
- It fits nicely to other similar questions.
- The closure of torus orbit of a generic point $K \in k^{r \times n}$ in the Grassmannian $\mathbb{G}(r, n)$ is the toric variety corresponding to the matroid of bases of K.

What is known

Theorem (Sturmfels 96)
If M is a uniform matroid then the double swaps form a Gröbner basis of I_{M}.

Theorem (Blasiak 08)

If M is a graphical matroid then I_{M} is generated by double swaps.

Theorem (Ohsugi-Hibi 00, Blum 01, HY 10)

If $\operatorname{rank}(M)=2$ then I_{M} is generated by double swaps (actually form a Gröbner basis).

Theorem (Kashiwabara 10)
If $\operatorname{rank}(M)=3$ then I_{M} is generated by double swaps.

size ≤ 9

Mayhew and Royle (2008) have classified all non-isomorphic matroids on ≤ 9 elements.

r / n	0	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	1	1
1		1	2	3	4	5	6	7	8	9
2			1	3	7	13	23	37	58	87
3				1	4	13	38	108	325	1275
4					1	5	23	108	940	190214
\vdots										
Total	1	2	4	8	17	38	98	306	1724	383172

size ≤ 9

Proposition

$I_{M^{*}}=I_{M}$ where M^{*} is the dual matroid of M.

size ≤ 9

Proposition

$I_{M^{*}}=I_{M}$ where M^{*} is the dual matroid of M.

After appr. four months of computation using a Perl script and 4ti2:

Theorem

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

size ≤ 9

Proposition

$I_{M^{*}}=I_{M}$ where M^{*} is the dual matroid of M.

After appr. four months of computation using a Perl script and 4ti2:

Theorem

The toric ideal of any matroid on a ground set of size ≤ 9 is generated by quadrics.

There are at least 2.5×10^{12} matroids of rank 10 .

Blasiak's Reduction

Proposition (Blasiak 08)

Let b be binomial of degree $m \geq 3$ in I_{M} of a matroid M of rank r

$$
b=x_{B_{i_{1}}} x_{B_{i_{2}}} \cdots x_{B_{i_{m}}}-x_{B_{j_{1}}} x_{B_{j_{2}}} \cdots x_{B_{j_{m}}}
$$

Then we get a new matroid M^{\prime} of rank r on rm elements and a binomial

$$
b^{\prime}=x_{D_{i_{1}}} x_{D_{i_{2}}} \cdots x_{D_{i_{m}}}-x_{D_{j_{1}}} x_{D_{j_{2}}} \cdots x_{D_{j_{m}}}
$$

where both $\left\{D_{i_{1}}, D_{i_{2}}, \ldots, D_{i_{m}}\right\}$ and $\left\{D_{j_{1}}, D_{j_{2}}, \cdots, D_{j_{m}}\right\}$ are partitions of the ground set of M^{\prime}. Moreover, b is connected by double swaps of M if and only if b^{\prime} is connected by double swaps of M^{\prime}.

rank = 2

Follows from an easy argument using Blasiak's reduction. We illustrate for $m=4$:

rank = 2

Follows from an easy argument using Blasiak's reduction. We illustrate for $m=4$:

We need to connect 12345678 to 13254768 .

rank = 2

Follows from an easy argument using Blasiak's reduction. We illustrate for $m=4$:

We need to connect 12345678 to 13254768 .

Two double swaps: $(56,78) \leftrightarrow(57,68)$ or $(56,78) \leftrightarrow(67,58)$.

rank $=2$

Follows from an easy argument using Blasiak's reduction. We illustrate for $m=4$:

We need to connect 12345678 to 13254768 .
Two double swaps: $(56,78) \leftrightarrow(57,68)$ or $(56,78) \leftrightarrow(67,58)$.
Two other double swaps: $(47,68) \leftrightarrow(46,78)$ or $(47,68) \leftrightarrow(67,48)$.

rank = 3 (Kashiwabara 10)

Based on Blasiak's reduction and induction. The base of induction deals with three cases:

rank = 3 (Kashiwabara 10)

Based on Blasiak's reduction and induction. The base of induction deals with three cases:

We need to connect 123456789 to 124378569 or to 124357689 or to 147258369.

rank = 3 (Kashiwabara 10)

Based on Blasiak's reduction and induction. The base of induction deals with three cases:

We need to connect 123456789 to 124378569 or to 124357689 or to 147258369.

Kashiwabara's long argument can be replaced by our computations.

rank = 3 (Kashiwabara 10)

Based on Blasiak's reduction and induction. The base of induction deals with three cases:

We need to connect 123456789 to 124378569 or to 124357689 or to 147258369.

Kashiwabara's long argument can be replaced by our computations.
The induction step uses a non-trivial matroid result which is a consequence of Matroid Partition Theorem.

Way to go

THANK YOU

