Gröbner bases in tropical geometry

Anders Jensen

Courant Research Center, Mathematisches Institut, Georg-August-Universität Göttingen

Osaka, July 2010

Gröbner bases in tropical geometry

...or tropical geometry in Gröbner basis theory.

Outline:

- Gröbner fans
- Tropical varieties
- Properties and computational approaches
- Dimension arguments with an example

An algorithmic definition of Gröbner fans

Buchberger's algorithm:

Input 1 A list of generators for an ideal $I \subseteq \mathbb{C}[x_1, ..., x_n]$ Input 2 A term order \prec (represented by a vector in $\mathbb{R}^n_{\geq 0}$) Output A reduced Gröbner basis for I w.r.t. \prec

Observe:

- Varying Input 2 we get different Gröbner bases.
- Two vectors are equivalent if they produce the same Gröbner basis.
- The equivalence classes are the maximal cones in the Gröbner fan of I.

An algorithmic definition of Gröbner fans

Initial forms and initial ideals

Consider the polynomial ring $\mathbb{C}[x_1, \ldots, x_n]$. Let $\omega \in \mathbb{R}^n$.

- ► The ω -degree of a monomial $x_1^{a_1} \cdots x_n^{a_n}$ with $a \in \mathbb{N}^n$ is $\langle \omega, a \rangle$.
- The *initial form in_ω(f)* of a polynomial *f* ∈ ℂ[*x*₁,..., *x_n*] is the sum of terms with maximal *ω*-*degree*. Example:

$$in_{(1,2)}(x_1^4 + 2x_2^2 + x_1x_2 + 1) = x_1^4 + 2x_2^2$$

▶ The *initial ideal* of an ideal $I \subseteq \mathbb{C}[x_1, ..., x_n]$ is defined as

$$\mathit{in}_\omega(\mathit{I}) = \langle \mathit{in}_\omega(\mathit{f}) : \mathit{f} \in \mathit{I}
angle$$

The Gröbner fan of an ideal

Definition (Mora, Robbiano, 1988)

• Let $I \subseteq \mathbb{C}[x_1, \ldots, x_n]$ be a homogeneous ideal.

• Define the Gröbner cone at ω :

$$C_{\omega}(I) := \overline{\{u \in \mathbb{R}^n : \operatorname{in}_u(I) = \operatorname{in}_\omega(I)\}}.$$

• The set $\{C_{\omega}(I) : \omega \in \mathbb{R}^n\}$ is the *Gröbner fan* of *I*.

Algorithm (Collart, Kalkbrener, Mall, 1997) Gröbner "walk":

A bigger Gröbner fan example

Example $I = \langle a^5 + b^3 + c^2 - 1, a^2 + b^2 + c - 1, a^6 + b^5 + c^3 - 1 \rangle \subseteq \mathbb{C}[a, b, c]$ has 360 reduced Gröbner bases and 360 full-dimensional cones in its fan. (Not homogeneous!) Intersection with triangle:

Tropical varieties

Definition If $I \subseteq \mathbb{C}[x_1, ..., x_n]$ is an ideal then we define $T(I) := \{ \omega \in \mathbb{R}^n : in_{\omega}(I) \text{ is monomial-free} \}.$

Example

The tropical variety of a principal ideal is called a *tropical hypersurface*. $T(\langle x_1 + x_2 + x_3 \rangle) \subseteq \mathbb{R}^3$ is the union of three 2dimensional cones:

Lemma

Any tropical variety is an intersection of hypersurfaces:

$$T(I) = \bigcap_{f \in I} T(\langle f \rangle)$$

A naive algorithm for computing the tropical variety

Algorithm

Input Generators for homogeneous $I \subseteq \mathbb{C}[x_1, ..., x_n]$. Output The set of Gröbner cones contained in T(I).

- Compute the Gröbner fan
- For each face C:
 - Compute a relative interior $\omega \in \mathbf{C}$
 - Compute $J := in_{\omega}(I)$
 - If J contains no monomial, then output C

Gröbner fan VS tropical variety

Let I be the ideal generated by the 3x3 minors of a 4x4 matrix

(x ₁₁	x ₁₂	x ₁₃	<i>x</i> ₁₄	
	x ₂₁	x ₂₂	x 23	x ₂₄	
	x ₃₁	x ₃₂	x 33	x 34	
ĺ	x ₄₁	x ₄₂	x 43	x 44	Ϊ

in the polynomial ring of 16 variables.

- ► The Gröbner fan has 163032 full-dimensional cones.
- ► T(I) is a 12-dimensional subfan with 936 maximal cones.

We do not want to compute the entire Gröbner fan.

Gfan

Gfan (Jensen, 2005-present):

software for computing Gröbner fans and tropical varieties.

Among others Gfan can compute the following:

- 1. Gröbner fans
- 2. Intersections of tropical hypersurfaces
- 3. Tropical varieties of prime ideals.
 - Algorithms appeared in [Fukuda, Jensen, Thomas]
 [Bogart, Jensen, Thomas, Speyer, Sturmfels]

Tropical varieties of prime ideals

A polyhedral fan is *pure* of dimension d if all maximal cones have dimension d.

Theorem (Bieri-Groves, 1984)

Let *I* be a monomial-free prime ideal. The tropical variety T(I) is pure of dimension Krull dim($\mathbb{C}[x_1, \ldots, x_n]/I$).

Notice

$$T(I \cap J) = T(I) \cup T(J)$$

$$\blacktriangleright T(I) = T(\sqrt{I}).$$

Primary decomposition gives:

Corollary

Every tropical variety is the finite union of pure tropical varieties.

Balancing property

Every pure dimensional tropical variety T(I) is balanced.

Unbalanced

Balanced

Can Gröbner bases be avoided?

Given *I* = ⟨*f*₁,...,*f_m*⟩, assume that coefficients are generic. Deciding if ω ∈ *T*(*I*) can be done by a Mixed Volume computation.

More generally:

Allermann and Rau define tropical varieties as balanced fans and work completely with polyhedral constructions (tropical intersection theory).

What we will do:

Do the tropical hypersurface intersection, and spot the tropical varity inside.

Determining the dimension of a variety V(I)

Suppose we cannot compute a Gröbner basis of $I = \langle f_1, \ldots, f_r \rangle$.

- Then we cannot compute T(I),
- but we can compute the superset

$$\bigcap_{i} T(\langle f_i \rangle) \supseteq T(I).$$

The properties

- ► T(I) is balanced.
- A projection of a T(I) is a tropical variety.
- A tropical variety in \mathbb{R}^1 is either \emptyset , {0}, or \mathbb{R}^1 .

• T(I) can be decomposed into pure tropical varieties. can be used to bound the dimension of T(I) (and V(I)).

Tropical hypersurfaces

Algorithm

Input A polynomial $f \in \mathbb{C}[x_1, ..., x_n]$ Output A collection of cones $T(\langle f \rangle)$

- Compute the normal fan of the Newton polytope of f.
- Take only those cones of dimension n 1.

Intersections of tropical hypersurfaces

Algorithm

Input Polynomials $f_1, \ldots, f_r \in \mathbb{C}[x_1, \ldots, x_n]$ Output A fan representing $\bigcap_i T(\langle f_i \rangle)$

- Compute $T(\langle f_1 \rangle), \ldots, T(\langle f_r \rangle)$
- Repeatedly apply

$$A \wedge B := \{a \cap b : a \in A, b \in B\}$$

to get $T(\langle f_1 \rangle) \land \cdots \land T(\langle f_r \rangle)$.

An example in celestial mechanics

Joint work in progress with Marshall Hampton: We have 47 equations $f_1, \ldots, f_{47} \in \mathbb{C}[x_1, \ldots, x_{10}]$ generating *I*.

We wish to determine dim(V(I)) inside $(\mathbb{C}^*)^n$, but we cannot compute a Gröbner basis.

We may easily compute

$$\bigcap_{i} T(\langle f_i \rangle) \supseteq T(I)$$

This is a fan with 117 cones up to symmetry.

We wish to show that the right hand side is zero-dimensional. For each of the 117 - 1 cones we wish to compute in_{ω}(*I*) and show that it contains a monomial.

We can only compute $J_{\omega} := \langle in_{\omega}(f_1), \dots, in_{\omega}(f_{47}) \rangle$.

How can we use properties of tropical varieties to argue about dimensions?

T(I) is contained in

Drawing is projective and up to an S_5 -symmetry. dim $(T(I)) \leq 3$.

Balancing property

- The 2-dimensional red cones are not balanced.
- ► \Rightarrow the three adjacent 3-dimensional cones cannot contain 3-dimensional stuff from T(I).
- \blacktriangleright \Rightarrow The "center" 2-dimensional cone cannot be balanced.

▶
$$\Rightarrow$$
 dim($T(I)$) \leq 2.

Projection property

- Not balanced at the red ray.
- ightarrowright hand side is at most one-dimensional.

Decomposition, projection $\Rightarrow \dim(T(I)) \leq 1$

References

- Bieri, Groves: "The geometry of the set of characters induced by valuations" (1984)
- Mora, Robbiano: "The Gröbner fan of an ideal" (1988)
- Collart, Kalkbrener, Mall: "Converting bases with the Gröbner walk" (1993)
- Speyer, Sturmfels: "The tropical Grassmannian" (2004)
- Hampton, Moeckel:"Finiteness of relative equilibria of the four-body problem" (2006)

- Bogart, J., Thomas, Speyer, Sturmfels: "Computing tropical varieties" (2007)
- Hampton, Jensen: "Finiteness of spatial central configurations..." (in preparation)