# On the projective dimension of edge ideals of chordal graphs 

Kyouko Kimura (Osaka University/JST CREST)

The Second CREST-SBM International Conference
"Harmony of Gröbner Bases and the Modern Industrial Society"
Short Communications (June 29, 2010)

$$
\begin{aligned}
& G=(V(G), E(G)): \quad \begin{array}{l}
\text { a finite graph } \\
\\
\text { with no loop, no multiple edge. } \\
V=V(G): \text { the vertex set of } G . \\
E(G): \text { the edge set of } G .
\end{array}
\end{aligned}
$$

- $G$ is chordal if each cycle of length $>3$ has a chord.
$\bullet G$ is a forest if $G$ contains no cycle.
$S=K[x: x \in V]:$ a polynomial ring $/$ a field $K$. $\operatorname{deg} x=1$.
The edge ideal of $G$ :

$$
I(G)=\left(x_{i} x_{j}:\left\{x_{i}, x_{j}\right\} \in E(G)\right)
$$

A minimal graded free resolution of $S / I(G)$ :
$0 \longrightarrow \bigoplus_{j} S(-j)^{\beta_{p, j}} \xrightarrow{d_{p}} \cdots \longrightarrow \bigoplus_{j} S(-j)^{\beta_{1, j}} \longrightarrow S \longrightarrow S / I(G) \longrightarrow 0$.
$S=\bigoplus_{n} S_{n}, \quad S_{n}: n$th homogeneous component of $S$. $[S(-j)]_{n}=S_{n-j}$.
$\beta_{i, j}=\beta_{i, j}(S / I(G)):(i, j)$-th graded betti number of $S / I(G)$.
$p=\operatorname{pd}_{S} S / \boldsymbol{I}(G):$ the projective dimension of $\boldsymbol{S} / \boldsymbol{I}(\boldsymbol{G})$. $\operatorname{reg} S / I(G)=\max \left\{j-i: \beta_{i, j} \neq 0\right\}:$ the regularity of $S / I(G)$.

Problem 1. Describe these invariants in terms of combinatorial data of $G$.

Known:

- $\operatorname{reg} S / I(G)$ for chordal graphs (Zheng, Hà and Van Tuyl).
- $\operatorname{pd}_{S} S / I(G)$ for forests (Zheng).


## Results:

- $\operatorname{pd}_{S} S / I(G)$ for chordal graphs.
- $\beta_{i, j}(S / I(G))$ for forests.
$\star$ Notation \& definition.

Definition 2 (Hà and Van Tuyl). Let $e, e^{\prime}$ be two distinct edges of $G$. Suppose that $e, e^{\prime}$ belong to the same connected component of $G$. Then the distance of $e, e^{\prime}$ (in $G$ ) is defined by

$$
\operatorname{dist}_{G}\left(e, e^{\prime}\right):=\min \left\{\ell: \begin{array}{l}
\exists e_{0}=e, e_{1}, \ldots, e_{\ell}=e^{\prime} \\
\text { s.t. } e_{i-1} \cap e_{i} \neq \emptyset, e_{i} \in E(G)
\end{array}\right\}
$$

When $e, e^{\prime}$ belong to the different connected component of $G$, then we set $\operatorname{dist}_{G}\left(e, e^{\prime}\right)=\infty$. We say that $e$ and $e^{\prime}$ are 3 -disjoint in $G$ if $\operatorname{dist}_{G}\left(e, e^{\prime}\right) \geq 3$.

$\operatorname{dist}_{G}\left(e, e^{\prime}\right)=3$

$\operatorname{dist}_{G}\left(e, e^{\prime}\right)=2$

> Theorem 3 (Zheng, Hà and Van Tuyl). Let $G$ be $a$ chordal graph. Then the regularity of $S / I(G)$ coincides with the maximum number of pairwise 3disjoint edges of $G$.



$$
\operatorname{reg} S / I(G)=2
$$

$$
\operatorname{reg} S / I(G)=3
$$

Definition 4 (Zheng). The graph $B$ with $V(B)=\left\{w, z_{1}, \ldots, z_{d}\right\}$ and $E(B)=\left\{\left\{w, z_{1}\right\}, \ldots,\left\{w, z_{d}\right\}\right\}(d \geq 1)$ called a bouquet.
On the above bouquet $B$, the vertex $w$ is called a root of $B$ and the vertices $z_{i}$ flowers of $B$, edges $\left\{w, z_{i}\right\}$ stems of $B$.


Let $\mathcal{B}=\left\{B_{1}, \ldots, B_{k}\right\}$ be a set of bouquets those are subgraphs of $G$

## Definition 5.

(1) We say $\mathcal{B}$ is strongly disjoint in $G$ if for any $i \neq j$, bouquets $B_{i}, B_{j}$ contain no common vertex, and there exists the set of edges $\left\{s_{1}, \ldots, s_{k}\right\}$ where $s_{i}$ is a stem of $B_{i}$ and $s_{i}, s_{j}$ are 3 -disjoint in $G$ for all $i \neq j$.
(2) We say $\mathcal{B}$ is semi-strongly disjoint in $G$ if for any $i \neq j$, bouquets $B_{i}, B_{j}$ contain no common vertex and the roots of $B_{i}, B_{j}$ have no common edge in $G$.

not semi-strongly disjoint


Strongly disjoint set of bouquets:


Not-strongly, semi-strongly disjoint set of bouquets:

$\star$ First Result.
For a bouquet $B$, we denote by $n(B)$, the number of flowers of $B$. For a set of bouquets $\mathcal{B}=\left\{B_{1}, \ldots, B_{k}\right\}$, we set $n(\mathcal{B})=n\left(B_{1}\right)+\cdots+n\left(B_{k}\right)$.
Set

$$
d=\max \left\{\begin{array}{ll}
n(\mathcal{B}): & \begin{array}{l}
\mathcal{B} \text { is a semi-strongly disjoint set } \\
\text { of bouquets of } G
\end{array}
\end{array}\right\}
$$

$d^{\prime}=\max \{n(\mathcal{B}): \mathcal{B}$ is a strongly disjoint set of bouquets of $G\}$.
Then $d^{\prime} \leq d$.
Theorem 6. Let $G$ be a chordal graph. Then
$\operatorname{pd}_{S} S / I(G)=d=d^{\prime}$.
Remark 7. Zheng proved this theorem when $G$ was a forest.

$\operatorname{pd}_{S} S / I(G)=3$.

$\star$ Second Result.
Let $\mathcal{B}$ be a set of bouquets. We denote by
$R(\mathcal{B})$, the set of roots of the bouquets in $\mathcal{B}$, $\boldsymbol{F}(\mathcal{B})$, union of the sets of flowers of the bouquets in $\mathcal{B}$.

Definition 8. We say that a graph $G$ contains strongly disjoint set of bouquets of type $(i, j)$ if there exists a strongly disjoint set of bouquets $\mathcal{B}$ in $G$ such that

$$
\begin{aligned}
& R(\mathcal{B}) \cup F(\mathcal{B})=V(G) \\
& \# F(\mathcal{B})=i ; \quad \# \boldsymbol{R}(\mathcal{B})=j
\end{aligned}
$$

> Theorem 9. Let $G$ be a forest. Then $\beta_{i, i+j}(S / I(G))$ coincides with the number of subsets $W$ of $V=V(G)$ such that $G_{W}$ contains a strongly disjoint set of bouquets of type $(i, j)$.

Remark 10. If $G$ is chordal, then the claim of Theorem 9 is false.

For example,


Then $\beta_{2,2+1}(S / I(G))=2$. But a subset $W$ of $V(G)=$ $\{1,2,3\}$ with $\# W=2+1=3$ is only $V(G)$.


$$
\begin{array}{lll|lllll}
\beta_{i, i+j}(S / I(G)):
\end{array} \quad \begin{array}{lllllll}
j \backslash i & 0 & 1 & 2 & 3 & 4 \\
\hline 0 & 1 & & & & & \\
& 1 & & 6 & 5 & & \\
& 2 & & & 6 & 9 & 3
\end{array}
$$


$\star$ Key Lemma.
Lemma 11 (Hà and Van Tuyl). Let $G$ be a chordal graph. Suppose that $e=\{u, v\}$ is an edge of $G$ such that $G_{N(v)}$ is a complete graph. Let $t=\# N(u)-1$ and $G^{\prime}$ the subgraph of $G$ with

$$
E\left(G^{\prime}\right)=\left\{e^{\prime} \in E(G): \operatorname{dist}_{G}\left(e, e^{\prime}\right) \geq 3\right\}
$$

Then both of $G \backslash e$ and $G^{\prime}$ are chordal and

$$
\boldsymbol{\beta}_{i, i+j}(S / I(G))=\beta_{i, i+j}(S / I(G \backslash e))
$$

$$
+\sum_{\ell=0}^{i-1}\binom{t}{\ell} \boldsymbol{\beta}_{i-1-\ell,(i-1-\ell)+(j-1)}\left(S / I\left(G^{\prime}\right)\right)
$$

$$
\beta_{i}(S / I(G))=\beta_{i}(S / I(G \backslash e))+\sum_{\ell=0}^{i-1}\binom{t}{\ell} \boldsymbol{\beta}_{i-1-\ell}\left(S / I\left(G^{\prime}\right)\right)
$$

