Bayes regularization and the geometry of discrete hierarchical loglinear models

Hélène Massam

York University
with G. Letac, Université Paul Sabatier

The problem

- We want to fit a hierarchical loglinear model to some discrete data given under the form of a contingency table.
- We put the Diaconis-Ylvisaker conjugate prior on the loglinear parameters of the multinomial distribution for the cell counts of the contingency table.
- We study the behaviour of the Bayes factor as the hyperparameter α of the conjugate prior tends to 0
- We are led to study the convex hull C of the support of the multinomial distribution.
- The facets of C are the most important objects in this study.

The data in a contingency table

- N objects are classified according to $|V|$ criteria.
- We observe the value of $X=\left(X_{\gamma} \mid \gamma \in V\right)$ which takes its values (or levels) in the finite set I_{γ}.
- The data is gathered in a $|V|$-dimensional contingency table with

$$
|I|=\times_{\gamma \in V}\left|I_{\gamma}\right| \text { cells } i .
$$

- The cell counts $(n)=(n(i), i \in \mathcal{I})$ follow a multinomial $\mathcal{M}(N, p(i), i \in \mathcal{I})$ distribution.
- We denote $i_{E}=\left(i_{\gamma}, \gamma \in E\right)$ and $n\left(i_{E}\right)$ respectively the marginal $-E$ cell and cell count.

The loglinear model

- We choose a special cell $0=(0, \ldots, 0)$.
- The set $\mathcal{D}=\left\{D \subseteq V: D_{1} \subset D \Rightarrow D_{1} \in \mathcal{D}\right\}$ define the hierarchical loglinear model.

$$
\log p(i)=\lambda_{\emptyset}+\sum_{D \in \mathcal{D}} \lambda_{D}(i)
$$

- We define $S(i)=\left\{\gamma \in V: i_{\gamma} \neq 0\right\}$ and

$$
j \triangleleft i \text { if } S(j) \subseteq S(i) \text { and } j_{S(j)}=i_{S(j)}
$$

- We change parametrization

$$
p(i) \mapsto \theta_{i}=\sum_{j \triangleleft i}(-1)^{|S(i) \backslash S(j)|} \log p(j) .
$$

The loglinear model:cont'd

- Define

$$
\begin{aligned}
J & =\{j \in I: S(j) \in \mathcal{D}\} \\
J_{i} & =\{j \in J, j \triangleleft i\}
\end{aligned}
$$

- Then the hierarchical loglinear model can be written as

$$
\log p(i)=\theta_{\emptyset}+\sum_{j \in J_{i}} \theta_{j} .
$$

Example

Consider the hierarchical model with
$V=\{a, b, c\}, \mathcal{A}=\{\{a, b\},\{b, c\}\}, I_{a}=\{0,1,2\}=I_{b}, \quad I_{c}=\{0,1\}$, and $i=(0,2,1)$. We have
$\mathcal{D}=\{a, b, c, a b, b c\}$
$J=\{(1,0,0),(2,0,0),(0,1,0),(0,2,0),(0,0,1),(1,1,0),(1,2,0)$, $(2,1,0),(2,2,0),(0,1,1),(0,2,1)\}$
$J_{i}=\{(0,2,0),(0,0,1),(0,2,1)\}$
$\log p(0,2,1)=\theta_{(0,2,1)}^{6}+\theta_{(0,2,1)}^{b}+\theta_{(0,2,1)}^{c}+\theta_{(0,2,1)}^{b, c}$

$$
=\theta_{(0,0,0)}+\theta_{(0,2,0)}+\theta_{(0,0,1)}+\theta_{(0,2,1)}
$$

$$
=\theta_{0}+\sum_{j \in J_{i}} \theta_{j}
$$

The multinomial hierarchical model

Since $J=\cup_{i \in \mathcal{I}} J_{i}$, the loglinear parameter is

$$
\theta_{J}=\left(\theta_{j}, \quad j \in J\right)
$$

The hierarchical model is characterized by J. For $i \neq 0$, the loglinear model can then be written

$$
\log p(i)=\theta_{0}+\sum_{j \in J_{i}} \theta_{j}
$$

with $\log p(0)=\theta_{0}$. Therefore

$$
p(0)=e^{\theta_{0}}=\left(1+\sum_{i \in I \backslash\{0\}} \exp \sum_{j \in J_{i}} \theta_{j}\right)^{-1}=L(\theta)^{-1}
$$

and

$$
\prod_{\imath \in I} p(i)^{n(i)}=\frac{1}{L(\theta)^{N}} \exp \left\{\sum_{J \in J} n\left(j_{S(j)} \theta_{j}\right\}=\exp \left\{\sum_{J \in J} n\left(j_{S(j)}\right) \theta_{j}+N \theta_{0}\right\} .\right.
$$

The model as an exponential family

Make the change of variable
$(n)=(n(i), i \in I \backslash\{0\}) \mapsto t=\left(t\left(i_{E}\right)=n\left(i_{E}\right), E \subseteq V \backslash\{\emptyset\}, i \in I \backslash\{0\}\right)$.
Then $\prod_{i \in I} p(i)^{n(i)}$ becomes
$\begin{aligned} f\left(t_{J} \mid \theta_{J}\right) & =\exp \left\{\sum_{j \in J} n\left(j_{S(j)}\right) \theta_{j}-N \log \left(1+\sum_{i \in I \backslash\{0\}} \exp \sum_{j \in J_{i}} \theta_{j}\right)\right\} \\ & =\frac{\exp \left\langle\theta_{J}, t_{J}\right\rangle}{L\left(\theta_{J}\right)^{N}} \text { with } \theta_{J}=\left(\theta_{j}, j \in J\right), \quad t_{J}=\left(n\left(j_{S(j)}, j \in J\right.\right.\end{aligned}$
and $L\left(\theta_{J}\right)=\left(1+\sum_{i \in I \backslash\{0\}} \exp \sum_{j \in J_{i}} \theta_{j}\right)$.
It is an NEF of dimension $|J|$, generated by the following measure.

The generating vectors

The set of functions from J to R is denoted by R^{J} and we write any function $h \in R^{J}$ as $h=(h(j), j \in J)$, which we can think of as a $|J|$ dimensional vector in $R^{|J|}$. Let $\left(e_{j}, j \in J\right)$ be the canonical basis of R^{J} and let

$$
f_{i}=\sum_{j \in J, j \triangleleft i} e_{j}, \quad i \in I .
$$

D	f_{0}	f_{a}	f_{b}	f_{c}	$f_{a b}$	$f_{a c}$	$f_{b c}$	$f_{a b c}$
e_{a}	0	1	0	0	1	1	0	1
e_{b}	0	0	1	0	1	0	1	1
e_{c}	0	0	0	1	0	1	1	1
$e_{a b}$	0	0	0	0	1	0	0	1
$e_{b c}$	0	0	0	0	0	0	1	1

The measure

We note that in our example R^{I} is of dimension 8 while R^{J} is of dimension 5 and the $\left(f_{j}, j \in J\right)$ are, of course, 5 -dimensional vectors. Consider now the counting measure in R^{J}

$$
\mu_{J}=\delta_{0}+\sum_{i \in \mathcal{I}} \delta_{f_{i}} .
$$

For $\theta \in R^{J}$, the Laplace transform of μ_{J} is
$\int_{R^{J}} e^{\langle\theta, x\rangle} \mu_{J}(d x)=1+\sum_{i \in \mathcal{I} \backslash\{0\}} e^{\left\langle\theta, f_{i}\right\rangle}=1+\sum_{i \in \mathcal{I} \backslash\{0\}} e^{\sum_{j \triangleleft i} \theta_{j}}=L(\theta)$.
Therefore the multinomial $f\left(t_{J} \mid \theta_{J}\right)=\frac{\exp \left(\theta_{J}, t_{J}\right\rangle}{L\left(\theta_{J}\right)^{N}}$ is the NEF generated by $\mu_{J}^{* N}$.

C_{J} : The convex hull of the support of μ_{J}

Since $\mu_{J}=\delta_{0}+\sum_{i \in \mathcal{I}} \delta_{f_{i}}$,
C_{J} is the open convex hull of $0 \in R^{J}$ and $f_{i}, i \in I$.
It is important to identify this convex hull since Diaconis and Ylvisaker (1974) have proven that the conjugate prior to an NEF, defined by

$$
\pi\left(\theta_{J} \mid m_{J}, \alpha\right)=\frac{1}{I\left(m_{J}, \alpha\right)} e^{\left\{\alpha\left\langle\theta_{J}, m_{J}\right\rangle-\alpha \log L\left(\theta_{J}\right)\right\}}
$$

is proper when the hyperparameters $m_{J} \in R^{J}$ and $\alpha \in R$ are such that

$$
\alpha>0 \text { and } m_{J} \in C_{J} .
$$

The DY conjugate prior

Clearly, we can write the multinomial density as $f\left(t_{J} \mid \theta_{J}\right)=f\left(t_{J} \mid \theta_{J}, J\right)$ where J represents the model. Assuming we put a uniform discrete distribution on the set of models, the joint distribution of J, t_{J}, θ_{J} is

$$
f\left(J, t_{J}, \theta_{J}\right) \propto \frac{1}{I\left(m_{J}, \alpha\right)} e^{\left\{\left\langle\theta_{J}, t_{J}+\alpha m_{J}\right\rangle-(\alpha+N) \log L\left(\theta_{J}\right)\right\}}
$$

and therefore the posterior density of J given t_{J} is

$$
h\left(J \mid t_{J}\right) \propto \frac{I\left(\frac{t_{J}+\alpha m_{J}}{\alpha+N}, \alpha+N\right)}{I\left(m_{J}, \alpha\right)} .
$$

Interpretation of the hyper parameter $\left(\alpha m_{J}, \alpha\right)$:

- α is the fictive total sample size
- $\alpha\left(m_{j}, j \in J\right)$ represent the fictive marginal counts.

The Bayes factor between two models

Consider two hierarchical models defined by J_{1} and J_{2}. The Bayes factor between the two models is

$$
\frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)} \times \frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)} .
$$

We will consider two cases depending on whether
$\frac{t_{k}}{N} \in C_{k}, k=1,2$ or not.

The Bayes factor between two models

When $\alpha \rightarrow 0$, if $\frac{t_{k}}{N} \in C_{k}, k=1,2$, then

$$
\frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)} \rightarrow \frac{I\left(\frac{t_{1}}{N}, N\right)}{I\left(\frac{t_{2}}{N}, N\right)}
$$

which is finite. Therefore we only need to worry about $\lim \frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)}$ when $\alpha \rightarrow 0$.

When $\alpha \rightarrow 0$, if $\frac{t_{k}}{N} \in \bar{C}_{k} \backslash C_{k}, k=1,2$, then, we have to worry about both limits.

Limiting behaviour of $I(m, \alpha)$

Definitions. Assume C is an open nonempty convex set in R^{n}.

- The support function of C is $h_{C}(\theta)=\sup \{\langle\theta, x\rangle: x \in C\}$
- The characteristic function of C :
$J_{C}(m)=\int_{R^{n}} e^{\langle\theta, m\rangle-h_{C}(\theta)} d \theta$
Examples of $J_{C}(m)$
- $C=(0,1)$. Then $h_{C}(\theta)=\theta$ if $\theta>0$ and $h_{C}(\theta)=0$ if $\theta \leq 0$.

Therefore $h_{C}(\theta)=\max (0, \theta)$ and

$$
J_{C}(m)=\int_{-\infty}^{0} e^{\theta m} d \theta+\int_{0}^{+\infty} e^{\theta m-\theta} d \theta=\frac{1}{m(1-m)}
$$

Limiting behaviour of $I(m, \alpha)$

Examples of $J_{C}(m)$

- C is the simplex spanned by the origin and the canonical basis $\left\{e_{1}, \ldots, e_{n}\right\}$ in R^{n} and $m=\sum_{i=1}^{n} m_{i} e_{i} \in C$. Then

$$
J_{C}(m)=\frac{n!\operatorname{Vol}(C)}{\prod_{j=0}^{n} m_{i}}=\frac{1}{\left(1-\sum_{j=1}^{n} m_{i}\right) \prod_{j=1}^{n} m_{i}}
$$

- $J=\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1)\}$ with C spanned by $f_{j}, j \in J$ and $m=\sum_{j \in J} m_{j} f_{j}$. Then

$$
\begin{aligned}
J_{C}(m) & =\frac{m_{(0,1,0)}\left(1-m_{(0,1,0)}\right)}{D_{a b} D_{b c}} \\
D_{a b} & =m_{(1,1,0)}\left(m_{(1,0,0)}-m_{(1,1,0)}\right)\left(m_{(0,1,0)}-m_{(1,1,0)}\right)\left(1-m_{(1,0,0)}-m_{(0,1,0)}+m_{(1,1,0)}\right) \\
D_{b c} & =m_{(0,1,1)}\left(m_{(0,0,1)}-m_{(0,1,1)}\right)\left(m_{(0,1,0)}-m_{(0,1,1)}\right)\left(1-m_{(0,0,1)}-m_{(0,1,0)}+m_{(0,1,1)}\right)
\end{aligned}
$$

Limiting behaviour of $I(m, \alpha)$

Theorem

Let μ be a measure on $R^{n}, n=|J|$, such that C the interior of the convex hull of the support of μ is nonempty and bounded. Let $m \in C$ and for $\alpha>0$, let

$$
I(m, \alpha)=\int_{R^{n}} \frac{e^{\alpha\langle\theta, m\rangle}}{L(\theta)^{\alpha}} d \theta .
$$

Then

$$
\lim _{\alpha \rightarrow 0} \alpha^{|J|} I(m, \alpha)=J_{C}(m)
$$

Furthermore $J_{C}(m)$ is finite if $m \in C$.

Limit of the Bayes factor

Let models J_{1} and J_{2} be such that $\left|J_{1}\right|>\left|J_{2}\right|$ and the marginal counts $\frac{t_{i}}{N}$ are both in C_{i}. Then the Bayes factor

$$
\frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)} \frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)} \sim \alpha^{\left|J_{1}\right|-\left|J_{2}\right|} \frac{I\left(\frac{t_{1}}{N}, N\right)}{I\left(\frac{t_{2}}{N}, N\right)}
$$

Therefore the Bayes factor tends towards 0 , which indicates that the model J_{2} is preferable to model J_{1}.

We proved the heuristically known fact that taking α small favours the sparser model.

We can say that α close to " 0 " regularizes the model.

Some comments

If $\frac{t_{i}}{N}$ are both in $C_{i}, i=1,2$ and $\left|J_{1}\right| \neq\left|J_{2}\right|$, we need not compute $J_{C}(m)$.
If $\frac{t_{i}}{N}$ are both in $C_{i}, i=1,2$ and $\left|J_{1}\right|=\left|J_{2}\right|$, then we might want to compute $J_{C}\left(m_{i}\right) i=1,2$. In this case, we have a few theoretical results. We define the polar convex set C_{0} of C

$$
C^{0}=\left\{\theta \in R^{n} ;\langle\theta, x\rangle \leq 1 \quad \forall x \in C\right\}
$$

then

- $\frac{J_{C}(m)}{n!}=\operatorname{Vol}(C-m)^{0}$
- If C in R^{n} is defined by its $K(n-1)$-dimensional faces $\left\{x \in R^{n}:\left\langle\theta_{k}, x\right\rangle=c_{k}\right\}$, then for $D(m)=\prod_{k=1}^{K}\left(\left\langle\theta_{k}, x\right\rangle-c_{k}\right)$,

$$
D(m) J_{C}(m)=N(m)
$$

where dearee of $N(m)$ is $<K$.

Limiting behaviour of $I\left(\frac{\alpha m+t}{\alpha+N}, \alpha+N\right)$

We now consider the case when $\frac{t}{N}$ belongs to the boundary of C. Then each facet of \bar{C} (of dimension $|J|-1$) is of the form

$$
F_{g}=\{x \in \bar{C}: g(x)=0\}
$$

where g be an affine form on R^{J}.
Theorem
Suppose $\frac{t}{N} \in \bar{C} \backslash C$ belongs to exactly M faces of \bar{C}. Then

$$
\lim _{\alpha \rightarrow 0} \alpha^{\min (M,|J|)} I\left(\frac{\alpha m+t}{\alpha+N}, \alpha+N\right)
$$

exists and is positive.

The Bayes factor

Combining the study of the asymptotic behaviour of $I(m, \alpha)$ and $I\left(\frac{\alpha m+t}{\alpha+N}, \alpha+N\right)$, we obtain that
when $\alpha \rightarrow 0$, the Bayes factor behaves as follows

$$
\begin{aligned}
& \frac{I\left(m_{2}, \alpha\right)}{I\left(m_{1}, \alpha\right)} \frac{I\left(\frac{t_{1}+\alpha m_{1}}{\alpha+N}, \alpha+N\right)}{I\left(\frac{t_{2}+\alpha m_{2}}{\alpha+N}, \alpha+N\right)} \\
& \quad \sim C \alpha^{\left|J_{1}\right|-\left|J_{2}\right|-\left[\min \left(M_{1},\left|J_{1}\right|\right)-\min \left(M_{2},\left|J_{2}\right|\right)\right]} \frac{J_{C_{1}}\left(m_{1}\right)}{J_{C_{2}}\left(m_{2}\right)}
\end{aligned}
$$

where C is a positive constant.

Facets of C when G is decomposable

Let $\left(C_{i}, i=1, \ldots, k\right)$ and $\left(S_{i}, i=2, \ldots, k\right)$ be the set of cliques and separators of G. Then

$$
I(m, \alpha)=\frac{\prod_{C \in \mathcal{C}} \Gamma\left(\alpha g_{0, C}(m)\right) \prod_{\{j \in J ; S(j) \subset C\}} \Gamma\left(\alpha g_{j, C}(m)\right)}{\Gamma(\alpha) \prod_{S \in \mathcal{S}}\left[\Gamma\left(\alpha g_{0, S}(m)\right) \prod_{\{j \in J ; S(j) \subset S\}} \Gamma\left(\alpha g_{j, S}(m)\right)\right]^{\nu(S)}} .
$$

where for $D \in \mathcal{C}$ or $D \in \mathcal{S}$,

$$
\begin{aligned}
g_{0, D}(m) & =1+\sum_{j ; S(j) \subset D}(-1)^{|S(j)|} m_{j} \\
g_{j_{0}, D}(m) & =\sum_{j ; S(j) \subset D, j_{0} \triangleleft j}(-1)^{|S(j)|-\left|S\left(j_{0}\right)\right|} m_{j}
\end{aligned}
$$

Facets of C when G is decomposable

Since $\Gamma(z) \sim \frac{1}{z}$ when $z \longrightarrow 0$, we have

$$
I(m, \alpha)^{-1} \sim \alpha^{|J|} \frac{\prod_{C \in \mathcal{C}} g_{0, C}(m) \prod_{\{j \in J ; S(j) \subset C\}} g_{j, C}(m)}{\prod_{S \in \mathcal{S}}\left[g_{0, S}(m) \prod_{\{j \in J ; S(j) \subset S\}} g_{j, S}(m)\right]^{\nu(S)}}
$$

i.e.

$$
\alpha^{|J|} I(m, \alpha) \rightarrow \frac{\prod_{S \in \mathcal{S}}\left[g_{0, S}(m) \prod_{\{j \in J ; S(j) \subset S\}} g_{j, S}(m)\right]^{\nu(S)}}{\prod_{C \in \mathcal{C}} g_{0, C}(m) \prod_{\{j \in J ; S(j) \subset C\}} g_{j, C}(m)}
$$

Therefore the facets of C are the intersection of C with the hyperplanes

$$
g_{0, C}(m)=0, \quad g_{j, C}(m), j \in J ; S(j) \subset C, C \in \mathcal{C} .
$$

Example

For G as $a---b---c$ and for binary data, the faces of C are
$m_{a b}=0, m_{a}-m_{a b}=0, m_{b}-m_{a b}=0,1-m_{a}-m_{b}+m_{a b}=0$
and
$m_{b c}=0, m_{b}-m_{b c}=0, m_{c}-m_{b c}=0,1-m_{b}-m_{c}+m_{b c}=0$.

Facets common to all C^{\prime} 's

Let \mathcal{C} be the set of generators of the hierarchical model.
For each $D \in \mathcal{C}$ and each $j_{0} \in J$ such that $S\left(j_{0}\right) \subset D$ define

$$
\begin{aligned}
g_{0, D}(m) & =1+\sum_{j ; S(j) \subset D}(-1)^{|S(j)|} m_{j} \\
g_{j_{0}, D}(m) & =\sum_{j ; S(j) \subset D, j_{0} \triangleleft j}(-1)^{|S(j)|-\left|S\left(j_{0}\right)\right|} m_{j}
\end{aligned}
$$

The intersection of C with the hyperplanes

$$
g_{0, D}(m)=0, \quad g_{j_{0}, D}(m), S\left(j_{0}\right) \subset D, D \in \mathcal{C}
$$

are facets of C whatever the hierarchical model. This is a new result since it gives us, for example, the facets of the hierarchical model with 4 factors a, b, c, d and three-way interaction $(a b c),(b c d),(c d a),(d a b)$.

Facets of C when G is a cycle

Let V be the set of vertices of G and let E be the set of cliques. For any subset $F \subseteq E$ with odd cardinality $|F|$,

$$
\begin{equation*}
\sum_{(a, b) \in F}\left(m_{a}+m_{b}-2 m_{a b}\right)-\left(\sum_{v \in V} m_{v}-\sum_{e \in E} m_{e}\right) \leq \frac{|F|-1}{2} \tag{1}
\end{equation*}
$$

This result can be deduced from known results in geometry on the facets of a correlation polytope governed by a graph.

Example

Consider the hierarchical model with $\mathcal{D}=\{(a b),(b c),(c a)$.

The 16 facets are given by the following affine forms being equal to 0 :

$$
\begin{array}{ccc}
m_{a b} & m_{b c} & m_{a c} \\
m_{a}-m_{a b} & m_{b}-m_{b c} & m_{c}-m_{a c} \\
m_{b}-m_{a b} & m_{c}-m_{b c} & m_{a}-m_{a c} \\
1-m_{a}-m_{b}+m_{a b} & 1-m_{b}-m_{c}+m_{b c} & 1-m_{a}-m_{c}+m_{a c} \\
m_{c}-m_{a c}-m_{b c}+m_{a b} & m_{a}-m_{a b}-m_{a c}+m_{b c} & m_{b}-m_{a b}-m_{b c}+m_{a c} \\
& 1-m_{a}-m_{b}-m_{c}+m_{a c}+m_{a b}+m_{b c} &
\end{array}
$$

Bayesian networks

Steck and Jaakola (2002) considered the problem of the limit of the Bayes factor when $\alpha \rightarrow 0$ for Bayesian networks.
Bayesian networks are not hierarchical models but in some cases, they are Markov equivalent to undirected graphical models which are hierarchical models.
Problem:compare two models which differ by one directed edge only.
Equivalent problem: with three variables binary X_{a}, X_{b}, X_{c} each taking values in $\{0,1\}$, compare Model $\mathcal{M}_{1}: a----b----c:\left|J_{1}\right|=5$.
Model \mathcal{M}_{2} : the complete model i.e. with $\mathcal{A}=\{(a, b, c)\}$. $\left|J_{2}\right|=7$

Our results

Model $\mathcal{M}_{2}: a----b----c:\left|J_{2}\right|=5$. The faces expressed in traditional notation are

$$
n_{11+}=n_{10+}=n_{01+}=n_{00+}=n_{+11}=n_{+10}=n_{+01}=n_{+00}=0
$$

Model $\mathcal{M}_{1}:\left|J_{1}\right|=7$. The faces expressed in traditional notation are

$$
n_{000}=n_{100}=n_{010}=n_{001}=n_{110}=n_{011}=n_{101}=n_{111}=0
$$

Example The data is such that $n_{000}=n_{100}=n_{101}=0$.
Therefore in $\mathcal{M}_{1}, \frac{t_{1}}{N}$ belongs to $M_{1}=3$ faces and in $\mathcal{M}_{2}, \frac{t_{2}}{N}$ belongs to $M_{1}=2$ faces $n_{10+}=0=n_{+00}$. Thus the Bayes factor $\sim \alpha^{d}$ where
$d=\left|J_{1}\right|-\left|J_{2}\right|-\left[\min \left(\mid J_{1}, M_{1}\right)-\min \left(\left|J_{2}\right|, M_{2}\right)\right]=7-5-[3-2]=1$

Steck and Jaakola (2002)

Define the effective degrees of freedom to be

$$
d_{E D F}=\sum_{i} I\left(n_{i}\right)-\sum_{i_{a b}} I\left(n\left(i_{a b}\right)\right)-\sum_{i_{b c}} I\left(n\left(i_{b c}\right)\right)+\sum_{i_{b}} I\left(n\left(i_{b}\right)\right)
$$

Theorem If $d_{E D F}>0$, the Bayes factor tends to 0 and if $d_{E D F}<0$ the Bayes factor tends to $+\infty$. If $d_{E D F}=0$, the Bayes factor can converge to any value.
In our example

$$
d_{E D F}=5-3-3+2=1
$$

Our results agree with SJ in the particular case of Bayesian networks. Our results give a much finer analysis for a more general class of problems.

Example of model search

We study the Czech Autoworkers 6-way table from Edwards and Havranek (1985).

This cross-classfication of 1841 men considers six potential risk factors for coronary trombosis:

- a, smoking;
- b, strenuous mental work;
- c, strenuous physical work;
- d, systolic blood pressure;
- e, ratio of beta and alpha lipoproteins;
- f, family anamnesis of coronary heart disease.

Edwards and Havranek (1985) use the LR test and Dellaportas and Forster (1999) use a Bayesian search with normal priors on the θ to analyse this data.

Czech Autoworkers example our method

We use a Bayesian search with

- $M C^{3}$
- our prior with $\alpha=1,2,3,32$ and then $\alpha=.05, .01$ and equal fictive counts for each cell
- The Laplace approximation to the marginal likelihood

Czech Autoworkers example

Search	$\alpha=1$		$\alpha=2$	
Dec.	$b c\|a c e\| a d e \mid f$	0.250	$b c\|a c e\| a d e \mid f$	0.261
	$b c\|a c e\| d e \mid f$	0.104	$b c\|a c e\| d e \mid f$	0.177
	$b c\|a d\| a c e \mid f$	0.102	$b c\|a c e\| d e \mid b f$	0.096
	$a c\|b c\| b e\|d e\| f$	0.060	$b c\|a d\| a c e \mid f$	0.072
	$b c\|a c e\| d e \mid b f$	0.051	$b c\|a c e\| d e \mid b f$	0.065
	$b c\|a c e\| d e \mid f$	med	$b c\|a d\| a c e\|d e\| f$	med
	$a c\|b c\| b e\|a d e\| f$	0.301	$a c\|b c\| b e\|a d e\| f$	0.341
	$a c\|b c\| a e\|b e\| d e \mid f$	0.203	$a c\|b c\| b e\|a d e\| b f$	0.141
	$a c\|b c\| b e\|a d e\| b f$	0.087	$a c\|b c\| a e\|b e\| d e \mid f$	0.116
	$a c\|b c\| a d\|a e\| b e \mid f$	0.083	$a c\|b c\| b e\|a d e\| e f$	0.059
	$a c\|b c\| a e\|b e\| d e \mid b f$	0.059		
	$a c\|b c\| a d\|a e\| b e\|d e\| f$	med	$a c\|b c\| b e\|a d e\| f$	med
Hierar.	$a c\|b c\| a d\|a e\| c e\|d e\| f$	0.241	$a c\|b c\| a d\|a e\| c e\|d e\| f$	0.175
	$a c\|b c\| a d\|a e\| b e\|d e\| f$	0.151	$a c\|b c\| a d\|a e\| b e\|d e\| f$	0.110
	$a c\|b c\| a d\|a e\| b e\|c e\| d e \mid f$	0.076	$a c\|b c\| a d\|a e\| b e\|c e\| d e \mid f$	0.078
	$a c\|b c\| a d\|a e\| c e\|d e\| b f$	0.070	$a c\|b c\| a d\|a e\| c e\|d e\| b f$	0.072
	$a c\|b c\| a d\|a e\| c e\|d e\| f$	med	$a c\|b c\| a d\|a e\| b e\|c e\| d e \mid f$	med

Results for α close to 0

Search	$\alpha=.5$		$\alpha=.01$	
Hierar.	$a c\|b c\| a d\|a e\| c e\|d e\| f$	0.3079	$a c\|b c\| a d\|a e\| c e\|d e\| f$	
	$a c\|b c\| a d\|a e\| b e\|d e\| f$	0.1926	$a c\|b c\| a d\|a e\| b e\|d e\| f$	
	$a c\|b c\| a d\|a e\| b e\|c e\| d e \mid f$	0.0686	$a c\|b c\| a e\|c e\| d e \mid f$	
	$a c\|b c\| a d\|a e\| c e\|d e\| b e$	0.0631	$a c\|b c\| d\|a e\| c e \mid f$	
	$a c\|b c\| a d\|a e\| c e\|d e\| f$	med	$a c\|b c\| a e\|d e\| f$	
			$a c\|b c\| c\|a e\| b e \mid f$	
			$a c\|b c\| a d\|a e\| c e \mid f$	
			0.0558	

Recall that for $\alpha=1,2$, the most probable model was ${ }_{a c|b c| a d|a e| c e|d e| f \text { with respective probablities } 0.241 \text { and }}$ 0.175 .

As $\alpha \mapsto 0$, the models become sparser but are consistent with those corresponding to larger values of α.

Another example

$$
\begin{array}{cccccccc}
32 & 3 & 86 & 2 & 56 & 35 & 7 & 0 \\
130 & 12 & 59 & 5 & 142 & 91 & 5 & 0
\end{array}
$$

Marginal a, b, d, h table from the Rochdale data in whittaker1990. The cells counts are written in lexicographical order with h varying fastest and a varying slowest.

The three models considered

We will consider three models J_{0}, J_{1} and J_{2} such that
(a) J_{0} is decomposable with cliques $\{a, d\},\{d, b\},\{b, h\}$ so that \mathcal{D} as defined in Section 2 is

$$
\mathcal{D}_{0}=\{a, b, d, h,(a d),(d b),(b h)\},\left|J_{0}\right|=7, M_{0}=0
$$

(b) J_{1} is a hierarchical model with generating set $\{(a d),(b d),(b h),(d h)\}$. This is not a graphical model and

$$
\mathcal{D}_{1}=\{a, b, d, h,(a d),(d b),(b h),(d h)\},\left|J_{1}\right|=8 M_{1}=0 .
$$

(c) J_{2} is decomposable with cliques $\{b, d, h\},\{a\}$,and

$$
\mathcal{D}_{2}=\{a, b, d, h,(a d),(d b),(b h),(d h),(b d h)\},\left|J_{2}\right|=8, M_{2}=1 .
$$

Asymptotics of $B_{1,0}$ and $B_{2,0}$

We have

$$
\begin{aligned}
B_{1,0} & \sim \alpha^{\left|J_{0}\right|-\left|J_{1}\right|-\left[\min \left(M_{0},\left|J_{0}\right|\right)-\min \left(M_{1},\left|J_{1}\right|\right)\right]} \frac{J_{C_{1}}\left(m_{1}\right)}{J_{C_{0}}\left(m_{0}\right)} \\
& =C_{1,0} \alpha^{(7-8-(0-0)}=C \alpha^{-1} \\
B_{2,0} & \sim \alpha^{\left|J_{0}\right|-\left|J_{2}\right|-\left[\min \left(M_{0},\left|J_{0}\right|\right)-\min \left(M_{2},\left|J_{2}\right|\right)\right]} \frac{J_{C_{2}}\left(m_{2}\right)}{J_{C_{0}}\left(m_{0}\right)} \\
& =C_{2,0} \alpha^{(7-8-(0-1)}=C_{2,0} \alpha^{0}=C_{2,0}
\end{aligned}
$$

The graphs

(b)

(c)

