On the relation of depth modulo a graded ideal and its initial ideal

Mitsuhiro MIYAZAKI

Kyoto University of Education

June 29, 2010
K : an infinite field
$S=K\left[X_{1}, \ldots, X_{r}\right]$: a polynomial ring
We assume that S is graded by a weight vector $w=\left(w_{1}, \ldots, w_{r}\right) \in$ $(\boldsymbol{N} \backslash\{0\})^{r}$, that is $\operatorname{deg} X_{i}=w_{i}$ for $i=1, \ldots, r$.
I : a graded ideal of S
Definition 1 The Krull dimension Krulldim S / I of S / I is $\max \left\{d \mid \exists P_{0}\right.$, P_{1}, \ldots, P_{d} such that $I \subset P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{d}$ and P_{i} is a prime ideal for any $i\}$.

Fact 2 Krulldim $S / I=\max \left\{t \mid \exists i_{1}, \ldots, i_{t}\right.$ such that the image of $X_{i_{1}}$, $\ldots, X_{i_{t}}$ in S / I are algebraically independent over $\left.K\right\}$.

Definition 3 depth $S / I:=\min \left\{i \mid \operatorname{Ext}_{S}^{i}(K, S / I) \neq 0\right\}$
Fact $4 \operatorname{depth} S / I=\min \left\{i \mid H_{\mathfrak{m}}^{i}(S / I) \neq 0\right\}$, where $\mathfrak{m}=\left(X_{1}, X_{2}, \ldots\right.$, X_{r}).

Fact 5 depth $S / I \leq \operatorname{Krulldim} S / I$.
Definition 6 If depth $S / I=\operatorname{Krulldim} S / I$, we say that S / I is CohenMacaulay.

Theorem 7 (Auslander-Buchsbaum) depth $S / I=r-\operatorname{projdim} S / I$.
In our situation,
Fact 8 projdim $S / I=\max \left\{i \mid \operatorname{Tor}_{i}^{S}(K, S / I) \neq 0\right\}$.
Definition $9 \beta_{i j}:=\operatorname{dim}_{K} \operatorname{Tor}_{i}^{S}(K, S / I)_{j} . \beta_{i j}$ are called Betti numbers.

Now assume that a monomial order $<$ on S is defined.
J : a graded ideal of S.
Fact 10 Krulldim $S / \operatorname{in}(J)=$ Krulldim S / J.
Fact 11 Let T be a new variable. There is an ideal \tilde{J} in $S[T]=$ $K[T]\left[X_{1}, \ldots, X_{r}\right]$ such that $S[T] / \tilde{J}$ is flat over $K[T], S[T] /((T)+\tilde{J}) \simeq$ $S / \operatorname{in}(J)$ and $S[T] /((T-u)+\tilde{J}) \simeq S / J$ for any $u \in K \backslash\{0\}$.
I.e., if we substitue T by u in $S[T]$, then $S[T] / \tilde{J}$ is isomorphic to S / J if $u \neq 0$ and is isomorphic to $S / \operatorname{in}(J)$ if $u=0$.

Corollary 12 Betti numbers are upper semi-continuous, i.e., for any i, j and for any $a \in \boldsymbol{R},\left\{u \in K \mid \beta_{i j}(u) \in[a, \infty)\right\}$ is a closed subset of K (in the Zariski topology).

Corollary 13 depth $S / \operatorname{in}(J) \leq \operatorname{depth} S / J$.

Example 14 Let n be an integer with $n>2, X=\left(X_{i j}\right)$ an $n \times n$ symmetric matrix of indeterminates, i.e., $\left\{X_{i j}\right\}_{1 \leq i \leq j \leq n}$ is a family of independent indeterminates and $X_{j i}=X_{i j}$ for $i<j$. Set $S=K\left[X_{i j} \mid\right.$ $1 \leq i \leq j \leq n]$ with $\operatorname{deg} X_{i j}=1$ for any i and j and consider the degree reverse lexicographic order given by $X_{11}>X_{12}>\cdots>X_{1 n}>X_{22}>$ $X_{23}>\cdots>X_{n n}$. Let $J=I_{2}(X)$ be the ideal generated by 2 -minors of X. Then $\operatorname{depth} S / J=n$ whereas $\operatorname{depth} S / \operatorname{in}(J)=2$.

Theorem 15 Assume that $S / \operatorname{in}(J)$ is reduced and has finite local cohomologies, i.e. $\operatorname{dim}_{K} H_{\mathfrak{m}}^{i}(S / \operatorname{in}(J))$ is finite for $i<\operatorname{Krulldim} S / \operatorname{in}(J)$. Then depth $S / \operatorname{in}(J)=\operatorname{depth} S / J . \quad$ In particular, if S / J is CohenMacaulay, then so is $S / \operatorname{in}(J)$.

Remark 16 In the situation of Example 14, $X_{i j}^{2}$ is a member of the minimal generationg system of $\operatorname{in}(J)$ for any i, j with $i<j$. In particular $S / \operatorname{in}(J)$ is not reduced. On the other hand, if we consider the lexicographic order or the degree lexicographic order on $K\left[X_{i j} \mid 1 \leq i \leq j \leq n\right]$, then $S / \operatorname{in}(J)$ is Cohen-Macaulay of Krull dimension n.

