On the relation of depth modulo a graded ideal and its initial ideal Mitsuhiro MIYAZAKI Kyoto University of Education June 29, 2010

K: an infinite field $S = K[X_1, \ldots, X_r]$: a polynomial ring We assume that S is graded by a weight vector $w = (w_1, \ldots, w_r) \in (\mathbf{N} \setminus \{0\})^r$, that is deg $X_i = w_i$ for $i = 1, \ldots, r$. I: a graded ideal of S

Definition 1 The Krull dimension KrulldimS/I of S/I is max $\{d \mid \exists P_0, P_1, \ldots, P_d \text{ such that } I \subset P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_d \text{ and } P_i \text{ is a prime ideal for any } i\}.$

Fact 2 Krulldim $S/I = \max\{t \mid \exists i_1, \ldots, i_t \text{ such that the image of } X_{i_1}, \ldots, X_{i_t} \text{ in } S/I \text{ are algebraically independent over } K\}.$

Definition 3 depth $S/I := \min\{i \mid \operatorname{Ext}_{S}^{i}(K, S/I) \neq 0\}$

Fact 4 depth $S/I = \min\{i \mid H^i_{\mathfrak{m}}(S/I) \neq 0\}$, where $\mathfrak{m} = (X_1, X_2, \ldots, X_r)$.

Fact 5 depth $S/I \leq \text{Krulldim}S/I$.

Definition 6 If depthS/I = KrulldimS/I, we say that S/I is Cohen-Macaulay.

Theorem 7 (Auslander-Buchsbaum) depthS/I = r - projdimS/I.

In our situation,

Fact 8 projdim $S/I = \max\{i \mid \operatorname{Tor}_i^S(K, S/I) \neq 0\}.$

Definition 9 $\beta_{ij} := \dim_K \operatorname{Tor}_i^S(K, S/I)_j$. β_{ij} are called Betti numbers.

Now assume that a monomial order < on S is defined. J: a graded ideal of S.

Fact 10 KrulldimS/in(J) =KrulldimS/J.

Fact 11 Let T be a new variable. There is an ideal \tilde{J} in $S[T] = K[T][X_1, \ldots, X_r]$ such that $S[T]/\tilde{J}$ is flat over K[T], $S[T]/((T) + \tilde{J}) \simeq S/\ln(J)$ and $S[T]/((T-u) + \tilde{J}) \simeq S/J$ for any $u \in K \setminus \{0\}$.

I.e., if we substitue T by u in S[T], then $S[T]/\tilde{J}$ is isomorphic to S/J if $u \neq 0$ and is isomorphic to $S/\ln(J)$ if u = 0.

Corollary 12 Betti numbers are upper semi-continuous, i.e., for any *i*, *j* and for any $a \in \mathbf{R}$, $\{u \in K \mid \beta_{ij}(u) \in [a, \infty)\}$ is a closed subset of K (in the Zariski topology).

Corollary 13 depth $S/in(J) \leq depthS/J$.

Example 14 Let *n* be an integer with n > 2, $X = (X_{ij})$ an $n \times n$ symmetric matrix of indeterminates, i.e., $\{X_{ij}\}_{1 \le i \le j \le n}$ is a family of independent indeterminates and $X_{ji} = X_{ij}$ for i < j. Set $S = K[X_{ij} | 1 \le i \le j \le n]$ with deg $X_{ij} = 1$ for any *i* and *j* and consider the degree reverse lexicographic order given by $X_{11} > X_{12} > \cdots > X_{1n} > X_{22} > X_{23} > \cdots > X_{nn}$. Let $J = I_2(X)$ be the ideal generated by 2-minors of *X*. Then depthS/J = n whereas depthS/ in(J) = 2.

Theorem 15 Assume that $S/\operatorname{in}(J)$ is reduced and has finite local cohomologies, i.e. $\dim_K H^i_{\mathfrak{m}}(S/\operatorname{in}(J))$ is finite for $i < \operatorname{Krulldim} S/\operatorname{in}(J)$. Then $\operatorname{depth} S/\operatorname{in}(J) = \operatorname{depth} S/J$. In particular, if S/J is Cohen-Macaulay, then so is $S/\operatorname{in}(J)$.

Remark 16 In the situation of Example 14, X_{ij}^2 is a member of the minimal generationg system of in(J) for any i, j with i < j. In particular S/in(J) is not reduced. On the other hand, if we consider the lexicographic order or the degree lexicographic order on $K[X_{ij} | 1 \le i \le j \le n]$, then S/in(J) is Cohen-Macaulay of Krull dimension n.