\& a

using Knot Theory

w/ Akio Kawauchi \& Kengo Kishimoto
by Ayaka Shimizu (Hiroshima University/OCAMI)
Mathematical Software and Free Documents XV

$$
\text { September 17, } 2012
$$

Region Select

GlobalEngineering

$$
\star \star \star \star \star(35)
$$

INSTALLED

This app is compatible with your KDDI Sony Ericsson IS11S．

More from developer

袋かけいぼ

globalengineering
$\star \star \star \star \star(40)$
Free

Number999

globalengineering

Free

ビューアー
globalengineering
No ratings
Free
See more，

Description

＂Region Select＂is a new puzzle game for Android discovered by
Osaka City University Advanced Mathematical Institute using advanced mathematical knot theory．
Although its rules are as simple as Sudoku and Rubik＇s Cube，＂Region Select＂will challenge you to
think ahead like Japanese Go．
［Game explanation］
At the beginning there is a knot figure．The spaces between the lines are called＂regions＂ and the places where the lines meet are called＂crossings＂．

Email Developer ，

App Screenshots

History of the game

2010. Region crossing change was defined by Kishimoto.
2011. S. showed that a region crossing change on knot diagrams is an unknotting operation.
2012. "Region Select" and "Region Lighting" were created by Kawauchi, Kishimoto and S.
2013. "Region Select" was released to Android market!
2014. A switching system was created by K-K-S.

Contents

§ 1. Region crossing change

§2. Games
§3. Switching
system

§1. Region crossing change

© Region crossing change
\& Proof of the "key theorem"

Knot

※ In this talk, knot diagrams are nontrivial and reduced. 6/38

Region crossing change

D : a knot diagram
R : a region of D

A region crossing change at R is changing all of the crossings on ∂R.

Region crossing change

(Region crossing changes do not depend on the order.)

Kishimoto's Question

Kishimoto's question (2010)
 Is a region crossing change on a knot diagram an unknotting operation?

For links...

Key theorem

Key theorem (S. 2010)

We can change any crossing of a knot diagram by region crossing changes.

- Reference
A. Shimizu, Region crossing change is an unknotting operation, arXiv: 1011.6304.

Key theorem

Corollary 1.

 Region crossing change on a knot diagram is an unknotting operation.

\S 1. Region crossing change

\& Region crossing change
\& Proof of the key theorem

Checkerboard coloring

Proposition 2.

D : a knot diagram with a
checkerboard coloring

$D \xrightarrow[\text { black regions }]{\text { rcc at all the }} D$

Proof of the key theorem

Proof.

To obtain the regions s.t. we change c by the region crossing changes ...

Proof of the key theorem

Step 1.

Splice D at c.

Then we obtain a two-component link diagram $D_{S}=D_{1} \cup D_{2}$.

Proof of the key theorem

Step 2.
Apply a checkerboard coloring to only D_{1}.

Proof of the key theorem

Step 3.

Take the regions of D corresponding to the black-colored regions of D_{S}.

Thus, we obtain the regions.

§2. Games (joint work with Kawauchi and Kishimoto)

Q Region Select
\& Region Lighting

Region Select

a knot projection
with lamps

Region Select

Region crossing change corresponds to...

changing ON/OFF at all of the lamps on the boudary of the region.

Region Select
By the key theorem, we can light up all of the lamps by region crossing changes for any knot projection with any state of lamps.

Region Select A Game Using Knot Theory

by Akio Kawauchi, Ayaka Shimizu and Kengo Kishimoto Japanese Patent Application (2011)

Region Select

is We can clear the game by $n / 2+1$ or less clickings. (n : the number of crossings)

2

\approx For any region, we can clear the game without clicking the region.

How to find the regions

 (Taniyama and Kishimoto's method)$$
\begin{gathered}
\underbrace{P}_{c_{3}} \begin{array}{l}
(1+1=0)
\end{array} \overbrace{1}^{1} \begin{array}{l}
R_{1} \\
0
\end{array})+\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
\Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right)
\end{gathered}
$$

Region Select w/ n colors (by Ahara and Suzuki)

We can play Region Select over $\bmod n$, too!

- Reference
K. Ahara and M. Suzuki, An integral region choice problem on knot projection, arXiv, 1201.4539.

Region Select w/ numbers (by Ahara and Suzuki)

Moreover,
we can play Region Select over \mathbb{Z} !!

Reference
K. Ahara and M. Suzuki, An integral region choice problem on knot projection, arXiv, 1201.4539.

§ 2. Games (joint work with Kawauchi and Kishimoto)

Q Region Select
ศि Region Lighting

Region Lighting

knot projection

Region Lighting

knot projection

with a lamp

Region Lighting

Region crossing change corresponds to...

changing ON/OFF at all the regions around the vertex.

Region Lighting

by Akio Kawauchi, Ayaka Shimizu and Kengo Kishimoto Japanese Patent Application (2011)

Region Lighting

We can clear the game by $v / 2$ or less clickings. (v : the number of vertices)
is For any vertex, we can clear the game without clicking the vertex.

Future works

We will apply Region Select and Region Lighting to...
\& primary education of graphics \& training cognitive functions during

§3. Switching system

Switching system

Switching system.

it We can make any state of room lights by choosing $r / 2+1$ or less switches. (r : the number of rooms)

Even if one switch breaks down, this switching system works.

