Cones of Hilbert FUNCTIONS

Gregory G. Smith

joint with Mats Boij

28 June 2010

Fundamental Problems

Fix $S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ where $\operatorname{deg} x_{i}=1$. Let M be an \mathbb{N}-graded S-module.

Hilbert (1890): If $\boldsymbol{h}_{\boldsymbol{M}}: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $h_{M}(i):=\operatorname{dim}_{[k} M_{i}$, then there exists $p_{M} \in \mathbb{Q}[i]$ such that $h_{M}(i)=p_{M}(i)$ for $i \gg 0$.

Problems: (1) For a collection of modules, describe the set (space?) of all Hilbert functions. (2) Describe the space of all modules with a given Hilbert function.

Prototype Solution to (1)

For positive integers m and i, there is an expression $m=\binom{k_{i}}{i}+\binom{k_{i-1}}{i-1}+\cdots+\binom{k_{j}}{j}$ with $k_{i}>k_{i-1}>\cdots>k_{j} \geq j \geq 1$.
Define $m^{(i)}:=\binom{k_{i}+1}{i+1}+\binom{k_{i-1}+1}{i}+\cdots+\binom{k_{j}+1}{j+1}$.
Macaulay (1927): For $h: \mathbb{N} \rightarrow \mathbb{N}$, the following are equivalent:
(a) $h(0)=1$ and $h(i+1) \leq h(i)^{(i)}$ for $i \geq 1$;
(b) there exists a homogeneous ideal I such that $h(i)=h_{S / I}(i)$ for all $i \in \mathbb{N}$.

Impact of Macaulay's Work

StrengThs: Proof distinguishes the lex-segment ideal. This monomial ideal has extremal syzygies and plays a central role in establishing the connectedness of the Hilbert scheme.

Weaknesses: (I) The function $m \longmapsto m^{(i)}$ is cumbersome.
(II) Analogues of the lex-segment ideal fail to exist in many similar situations.

Cone of Hilbert Functions

The set of Hilbert functions forms a semigroup: $h_{M \oplus N}(i)=h_{M}(i)+h_{N}(i)$.
If we bound $a:=\max \left\{i: h_{M}(i) \neq p_{M}(i)\right\}$, then this is an affine semigroup (i.e. subsemigroup of $\mathbb{Z}^{n_{+}+\boldsymbol{a}+1}$).
Problem: Describe the convex hull of the set of Hilbert functions.

REMARK: In general, this semigroup is not saturated - there exists lattice points in the convex hull which do not correspond to Hilbert functions.

Preferred Basis

Hilbert reformulated:
$F_{M}(t):=\sum_{j \geq 0} h_{M}(i) t^{i} \in \mathbb{Q}(t)$ and $\operatorname{deg} F_{M}(t)=\max \left\{i: h_{M}(i) \neq p_{M}(i)\right\}$.
Set $\Delta h(i):=h(i+1)-h(i)$ for all $i \in \mathbb{Z}$.
Lemma: If M is a finitely generated \mathbb{N}-graded S-module, $\operatorname{dim} M=d$, and $a \geq \operatorname{deg} F_{M}(t)$ then

$$
F_{M}(t)=\sum_{i=0}^{a} h_{M}(i) t^{i}+t^{d} \sum_{j=0}^{d-1} \Delta^{j} h(a+1) \frac{t^{j+1}}{(1-t)^{j+1}} .
$$

Corollary: We have

$$
h \longleftrightarrow\left(h(0), \ldots, \Delta^{d-1} h(a+1)\right) \in \mathbb{Z}^{d+a+1} .
$$

Facet Inequalities

Theorem (Boij-Smith): If M is an
\mathbb{N}-graded S-module that is finitely generated in degree $0, \operatorname{dim} M=d$, and $a \geq \operatorname{deg} F_{M}(t)$, then $h_{M} \in \mathbb{Z}^{d+a+1}$ lies in the rational simplicial cone defined by the half-spaces:

$$
\begin{array}{ll}
\frac{h_{M}(i)}{\left(\begin{array}{c}
n+i
\end{array}\right)} \geq \frac{h_{M}(i+1)}{\binom{n+i+1}{i+1}} & \text { for } 0 \leq i \leq a \\
\frac{\Delta^{j} h_{M}(a+1)}{\binom{n+a+1}{j+a+1}} \geq \frac{d^{j+1} h_{M}(a+1)}{\binom{n+a+1)}{j+a+2}} & \text { for } 0 \leq j<d .
\end{array}
$$

Extremal Rays

Let $R(d, a):=S /\left\langle x_{d}, \ldots, x_{n}\right\rangle^{d+a+1}$ so

$$
F_{R(d, a)}(t)=\sum_{i=0}^{a}\binom{n+i}{i} t^{i}+t^{a} \sum_{j=0}^{d-1}\binom{n+a+1}{j+a+1} \frac{t^{j+1}}{(1-t)^{j+1}}
$$

Theorem (BOIJ-Smith): If M is an \mathbb{N}-graded S-module that is finitely generated in degree $0, \operatorname{dim} M=d$, and $a \geq \operatorname{deg} F_{M}(t)$, then
$h_{M} \in \operatorname{pos}_{\mathbb{Q}}\left(h_{R(d, a)}, \ldots, h_{R(0, a)}, \ldots, h_{R(0,0)}\right)$.

Multigraded Version

Fix a smooth projective toric variety X with Cox ring $S ; \operatorname{deg} x_{\rho}:=\mathcal{O}\left(D_{\rho}\right) \in \operatorname{Pic} X \cong \mathbb{Z}^{r}$. Smoothness means $h: \operatorname{Psef} X \rightarrow \mathbb{N}$ is a polynomial on a translate of Nef X.
Let $B=\cap \boldsymbol{P}_{\sigma}$ where $\boldsymbol{P}=\left\langle x_{\rho}: \rho \in \sigma\right\rangle$ be its irrelevant ideal; subschemes $Y \subseteq X$ correspond to \boldsymbol{B}-saturated \boldsymbol{S}-ideals.

Skeleton of a Theorem: The cone of Hilbert functions for $Y \subseteq X$ is generated by $S / \cap P_{\tau}^{e}$ where $\tau \subseteq \sigma$.

