CONES OF HILBERT FUNCTIONS

Gregory G. Smith

joint with Mats Boij

28 June 2010

Fundamental Problems

- Fix $S := \Bbbk [x_0, ..., x_n]$ where deg $x_i = 1$. Let *M* be an \mathbb{N} -graded *S*-module.
- HILBERT (1890): If $h_M : \mathbb{N} \to \mathbb{N}$ is defined by $h_M(i) := \dim_{\mathbb{K}} M_i$, then there exists $p_M \in \mathbb{Q}[i]$ such that $h_M(i) = p_M(i)$ for $i \gg 0$.

PROBLEMS: (1) For a collection of modules, describe the set (space?) of all Hilbert functions.
(2) Describe the space of all modules with a given Hilbert function.

Prototype Solution to (1) For positive integers *m* and *i*, there is an expression $m = \binom{k_i}{i} + \binom{k_{i-1}}{i-1} + \dots + \binom{k_j}{i}$ with $k_i > k_{i-1} > \cdots > k_i \ge j \ge 1$. Define $m^{(i)} := \binom{k_i+1}{i+1} + \binom{k_{i-1}+1}{i} + \dots + \binom{k_j+1}{i+1}$.

MACAULAY (1927): For $h: \mathbb{N} \to \mathbb{N}$, the following are equivalent: (a) h(0) = 1 and $h(i+1) \le h(i)^{(i)}$ for $i \ge 1$; (b) there exists a homogeneous ideal *I* such that $h(i) = h_{S/I}(i)$ for all $i \in \mathbb{N}$.

Impact of Macaulay's Work

STRENGTHS: Proof distinguishes the *lex-segment ideal*. This monomial ideal has extremal syzygies and plays a central role in establishing the connectedness of the Hilbert scheme.

WEAKNESSES: (I) The function $m \mapsto m^{(i)}$ is cumbersome. (II) Analogues of the lex-segment ideal

fail to exist in many similar situations.

Cone of Hilbert Functions

- The set of Hilbert functions forms a semigroup: $h_{M \oplus N}(i) = h_M(i) + h_N(i)$.
- If we bound $a := \max\{i : h_M(i) \neq p_M(i)\}$, then this is an affine semigroup (i.e. subsemigroup of \mathbb{Z}^{n+a+1}).
- **PROBLEM:** Describe the convex hull of the set of Hilbert functions.

REMARK: In general, this semigroup is not saturated — there exists lattice points in the convex hull which do not correspond to Hilbert functions.

Preferred Basis

HILBERT REFORMULATED: $F_M(t) \coloneqq \sum_{i>0} h_M(i) t^i \in \mathbb{Q}(t)$ and $\deg F_M(t) = \max\{i: h_M(i) \neq p_M(i)\}.$ Set $\Delta h(i) := h(i+1) - h(i)$ for all $i \in \mathbb{Z}$. **LEMMA:** If *M* is a finitely generated \mathbb{N} -graded *S*-module, dim *M*=*d*, and $a \geq \deg F_{M}(t)$ then $F_{M}(t) = \sum_{i=0}^{a} h_{M}(i)t^{i} + t^{a} \sum_{i=0}^{d-1} \Delta^{j} h(a+1) \frac{t^{j+1}}{(1-t)^{j+1}}.$ **COROLLARY: We have** $h \longleftrightarrow (h(0), \ldots, \Delta^{d-1}h(a+1)) \in \mathbb{Z}^{d+a+1}$

Facet Inequalities

THEOREM (BOIJ-SMITH): If *M* is an N-graded *S*-module that is finitely generated in degree 0, dim M = d, and $a \ge \deg F_M(t)$, then $h_M \in \mathbb{Z}^{d+a+1}$ lies in the rational simplicial cone defined by the half-spaces:

$$\frac{h_{M}(i)}{\binom{n+i}{i}} \ge \frac{h_{M}(i+1)}{\binom{n+i+1}{i+1}} \quad \text{for } 0 \le i \le a$$
$$\frac{\Delta^{j}h_{M}(a+1)}{\binom{n+a+1}{j+a+1}} \ge \frac{\Delta^{j+1}h_{M}(a+1)}{\binom{n+a+1}{j+a+2}} \quad \text{for } 0 \le j < d.$$

Extremal Rays

Let
$$R(d,a) := S/\langle x_d, ..., x_n \rangle^{d+a+1}$$
 so
 $F_{R(d,a)}(t) = \sum_{i=0}^{a} {n+i \choose i} t^i + t^a \sum_{j=0}^{d-1} {n+a+1 \choose j+a+1} \frac{t^{j+1}}{(1-t)^{j+1}}.$

THEOREM (BOIJ-SMITH): If *M* is an \mathbb{N} -graded *S*-module that is finitely generated in degree 0, dim M = d, and $a \ge \deg F_M(t)$, then $h_M \in \operatorname{pos}_{\mathbb{Q}}(h_{R(d,a)}, \dots, h_{R(0,a)}, \dots, h_{R(0,0)})$.

Multigraded Version

- Fix a smooth projective toric variety Xwith Cox ring S; deg $x_{\rho} := \mathcal{O}(D_{\rho}) \in \operatorname{Pic} X \cong \mathbb{Z}^{r}$. Smoothness means $h : \operatorname{Psef} X \to \mathbb{N}$ is a polynomial on a translate of Nef X.
- Let $B = \cap P_{\sigma}$ where $P = \langle x_{\rho} : \rho \in \sigma \rangle$ be its irrelevant ideal; subschemes $Y \subseteq X$ correspond to *B*-saturated *S*-ideals.

SKELETON OF A THEOREM: The cone of Hilbert functions for $Y \subseteq X$ is generated by $S / \cap P_{\tau}^{e}$ where $\tau \subseteq \sigma$.