Geometry of Blaschke products and bicentric polygons

Masayo FUJIMURA

Department of Mathematics, National Defense Academy

数学ソフトウェアとフリードキュメント XV 2012. September 17

Contents

Part I

- Chapple-Euler formula and Poncelet's porism
- Blaschke products
- An another proof of Chapple-Euler formula
- An extension of Chapple-Euler formula
- 第2部 (絵を描いて考える)
 - 高次 Blaschke 積
 - 関連問題

Part I

Chapple-Euler formula

Bicentric polygon is a polygon which has both inscribed circle and circumscribed circle.

Theorem (Chapple-Euler (1746, 1765))

The distance d between the circuncenter and incenter of a triangle is given by $d^2 = R(R-2r)$, where R and r are the circunradius and inradius, respectively. In particular, if circumscribed circle is the unit circle, then the distance is given by

$$d^2 = 1 - 2r.$$

Poncelet's porism

Theorem (Poncelet (1822))

As shown in the following figure, ellipse E_2 is in the inside of ellipse E_1 . If polygonal line inscribed in E_1 and simultaneously tangent to E_2 closes for one particular position of the start point P_0 on E_1 , then it closes for every position of E_1 .

Blaschke product

A Blaschke product of degree d is a rational function defined by

$$B(z) = e^{i\theta} \prod_{k=1}^{d} \frac{z - a_k}{1 - \overline{a_k} z} \qquad (a_k \in \mathbb{D}, \ \theta \in \mathbb{R}).$$

The Blaschke product is an holomorphic function on \mathbb{D} , continuous on $\overline{\mathbb{D}}$, and maps \mathbb{D} to itself.

Let

$$B(z) = z \prod_{k=1}^{d-1} \frac{z - a_k}{1 - \overline{a_k} z} \qquad (a_k \in \mathbb{D}, \ \theta \in \mathbb{R}).$$

• Every point of $\partial \mathbb{D}$ has exactly different d preimages on $\partial \mathbb{D}$.

• Let
$$z_1, \dots, z_d$$
 be d preimages of $\lambda \in \partial \mathbb{D}$, and
 $F(z) = \frac{B(z)/z}{B(z) - \lambda} = \sum_{k=1}^d \frac{m_k}{z - z_k}$. Then, m_j satisfy
 $\sum_{k=1}^d m_k = 1$ and $0 < m_k < 1 \ (k = 1, \dots, d)$.

The Results of Daepp, Gorkin and Mortini

Theorem (Daepp, Gorkin and Mortini (2002))

Let $B(z) = z \frac{z-a}{1-\overline{a}z}$ $(a \neq 0, a \in \mathbb{D})$. For $\lambda \in \partial \mathbb{D}$, let z_1, z_2 be the two distinct points satisfying $B(z_1) = B(z_2) = \lambda$. Then the line joining z_1 and z_2 passes through the point a.

Conversely, the two intersection points ζ_1, ζ_2 of any line through the point a and $\partial \mathbb{D}$ satisfy $B(\zeta_1) = B(\zeta_2)$.

This theorem holds for more general Blaschke product of degree 2,

$$B(z) = e^{i\theta} \frac{z-a}{1-\overline{a}z} \cdot \frac{z-b}{1-\overline{b}z}.$$

In this case the fixed point is given by z_1
$$\frac{a+b-ab\overline{(a+b)}}{1-ab\overline{ab}}.$$

Theorem (Daepp, Gorkin and Mortini (2002))

Let $B(z) = z \frac{z-a}{1-\overline{a}z} \cdot \frac{z-b}{1-\overline{b}z}$ $(a, b \neq 0, a \neq b, a, b \in \mathbb{D})$, and z_1, z_2, z_3 be the three distinct preimages of $\lambda \in \partial \mathbb{D}$ by B. Then, the lines joining z_k, z_ℓ $(k \neq \ell)$ is tangent to the ellipse

$$E: |z-a| + |z-b| = |1 - \overline{a}b|.$$

Conversely, each point of E is the point of tangency E of a line that passes through two distinct points ζ_1, ζ_2 on $\partial \mathbb{D}$ for which

$$B(\zeta_1) = B(\zeta_2).$$

An another proof of Chapple-Euler formula

Corollary (multiple zeros)

Let $B(z) = z \left(\frac{z-a}{1-\overline{a}z}\right)^2 (a \neq 0, a \in \mathbb{D})$, and z_1, z_2, z_3 are preimages of $\lambda \in \partial \mathbb{D}$ by B. Then, the line joining $z_k, z_\ell \ (k \neq \ell)$ is tangent to the circle

$$C: |z-a| = \frac{1}{2}(1-|a|^2).$$

Lemma

For three mutually distinct points z_1, z_2, z_3 on $\partial \mathbb{D}$, there exist a point $\lambda \in \partial \mathbb{D}$ and a point $a \in \mathbb{D}$ such that

$$B(z_1)=B(z_2)=B(z_3)=\lambda, \quad ext{where} \quad B(z)=z\Big(rac{z-a}{1-\overline{a}z}\Big)^2.$$

Proof. Set

$$\lambda = z_1 z_2 z_3, \quad a = \frac{|z_1 - z_2|z_3 + |z_2 - z_3|z_1 + |z_3 - z_1|z_2}{|z_1 - z_2| + |z_2 - z_3| + |z_3 - z_1|}$$

Then $B(z_1) = B(z_2) = B(z_3) = \lambda$.

Corollary and Lemma gives an another proof of Chapple-Euler formula (both necessity and sufficiency !)

An inscribed ellipse and the circumscribed circle

Remark:

- There are many inscribed ellipses for a triangle $z_1 z_2 z_3$.
- When the point *a* tends to the line joining z_1 , z_2 , the point *b* converges to the point z_3 .

Lemma

For three mutually distinct points z_1, z_2, z_3 on $\partial \mathbb{D}$ and every point a on the interior of triangle $z_1 z_2 z_3$, there exist a point $\lambda \in \partial \mathbb{D}$ and a Blaschke product B of degree 3 with zeros at the origin and a such that

$$B(z_1) = B(z_2) = B(z_3) = \lambda$$

Proof. Set $\lambda = z_1 z_2 z_3$, and $b = \frac{1}{1 - |a|^2} (z_1 + z_2 + z_3 - \overline{a}\lambda(\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}) - a + \overline{a}^2\lambda)$. Then we have $B(z) = z \cdot \frac{z - a}{1 - \overline{a}z} \cdot \frac{z - b}{1 - \overline{b}z}$.

An extension of Chapple-Euler formula

Proposition

For any triangle that is inscribed in the unit circle, an ellipse is inscribed in the triangle if and only if the ellipse is associated with a Blaschke product of degree 3.

Theorem (An extension of Chapple-Euler)

Let ABC be the triangle with vertices at $A(\alpha)$, $B(\beta)$, $C(\gamma) \in \partial \mathbb{D}$, and a a one of the focus of the ellipse inscribed in the triangle ABC. Then, the other focus b is uniquely determined by

$$b=\frac{1}{1-|a|^2}\bigg(\alpha+\beta+\gamma-\overline{a}\lambda\Big(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\Big)-a+\overline{a}^2\lambda\bigg),$$

and the sum of the distance between two focus points a, b and each point on the ellipse is given by $|1 - \overline{a}b|$.

Conversely, for each pair of points $a, b \in \mathbb{D}$, there is a triangle which is inscribed in the unit circle and inscribes the ellipse $|z - a| + |z - b| = |1 - \overline{a}b|$.

第2部 省略

M. Fujimura (N.D.A.)

Blaschke products and bicentric polygons

2012. Sep. 17 13 / 13