Geometry of Blaschke products and bicentric polygons

Masayo FUJIMURA

Department of Mathematics， National Defense Academy

数学ソフトウェアとフリードキュメント XV 2012．September 17

Contents

－Part I
－Chapple－Euler formula and Poncelet＇s porism
－Blaschke products
－An another proof of Chapple－Euler formula
－An extension of Chapple－Euler formula

- 第2部（絵を描いて考える）
- 高次 Blaschke 積
- 関連問題

Part |

Chapple-Euler formula

Bicentric polygon is a polygon which has both inscribed circle and circumscribed circle.

Theorem (Chapple-Euler $(1746,1765)$)
The distance d between the circuncenter and incenter of a triangle is given by $d^{2}=R(R-2 r)$, where R and r are the circunradius and inradius, respectively. In particular, if circumscribed circle is the unit circle, then the distance is given by

$$
d^{2}=1-2 r .
$$

Poncelet's porism

Theorem (Poncelet (1822))

As shown in the following figure, ellipse E_{2} is in the inside of ellipse E_{1}. If polygonal line inscribed in E_{1} and simultaneously tangent to E_{2} closes for one particular position of the start point P_{0} on E_{1}, then it closes for every position of E_{1}.

Blaschke product

A Blaschke product of degree d is a rational function defined by

$$
B(z)=e^{i \theta} \prod_{k=1}^{d} \frac{z-a_{k}}{1-\overline{a_{k}} z} \quad\left(a_{k} \in \mathbb{D}, \theta \in \mathbb{R}\right)
$$

The Blaschke product is an holomorphic function on \mathbb{D}, continuous on $\overline{\mathbb{D}}$, and maps \mathbb{D} to itself.

Let

$$
B(z)=z \prod_{k=1}^{d-1} \frac{z-a_{k}}{1-\overline{a_{k}} z} \quad\left(a_{k} \in \mathbb{D}, \theta \in \mathbb{R}\right) .
$$

- Every point of $\partial \mathbb{D}$ has exactly different d preimages on $\partial \mathbb{D}$.
- Let z_{1}, \cdots, z_{d} be d preimages of $\lambda \in \partial \mathbb{D}$, and $F(z)=\frac{B(z) / z}{B(z)-\lambda}=\sum_{k=1}^{d} \frac{m_{k}}{z-z_{k}}$. Then, m_{j} satisfy

$$
\sum_{k=1}^{d} m_{k}=1 \quad \text { and } \quad 0<m_{k}<1(k=1, \cdots, d) .
$$

The Results of Daepp, Gorkin and Mortini

Theorem (Daepp, Gorkin and Mortini (2002))

Let $B(z)=z \frac{z-a}{1-\bar{a} z}(a \neq 0, a \in \mathbb{D})$. For $\lambda \in \partial \mathbb{D}$, let z_{1}, z_{2} be the two distinct points satisfying $B\left(z_{1}\right)=B\left(z_{2}\right)=\lambda$. Then the line joining z_{1} and z_{2} passes through the point a.

Conversely, the two intersection points ζ_{1}, ζ_{2} of any line through the point a and $\partial \mathbb{D}$ satisfy $B\left(\zeta_{1}\right)=B\left(\zeta_{2}\right)$.

This theorem holds for more general Blaschke product of degree 2,

$$
B(z)=e^{i \theta} \frac{z-a}{1-\bar{a} z} \cdot \frac{z-b}{1-\bar{b} z} .
$$

In this case the fixed point is given by

$$
\frac{a+b-a b \overline{(a+b)}}{1-a b \overline{a b}} .
$$

Theorem (Daepp, Gorkin and Mortini (2002))

Let $B(z)=z \frac{z-a}{1-\bar{a} z} \cdot \frac{z-b}{1-\bar{b} z}(a, b \neq 0, a \neq b, a, b \in \mathbb{D})$, and z_{1}, z_{2}, z_{3} be the three distinct preimages of $\lambda \in \partial \mathbb{D}$ by B. Then, the lines joining $z_{k}, z_{\ell}(k \neq \ell)$ is tangent to the ellipse

$$
E: \quad|z-a|+|z-b|=|1-\bar{a} b| .
$$

Conversely, each point of E is the point of tangency E of a line that passes through two distinct points ζ_{1}, ζ_{2} on $\partial \mathbb{D}$ for which

$$
B\left(\zeta_{1}\right)=B\left(\zeta_{2}\right) .
$$

An another proof of Chapple-Euler formula

Corollary (multiple zeros)
Let $B(z)=z\left(\frac{z-a}{1-\bar{a} z}\right)^{2}(a \neq 0, a \in \mathbb{D})$, and z_{1}, z_{2}, z_{3} are preimages of $\lambda \in \partial \mathbb{D}$ by B.
Then, the line joining $z_{k}, z_{\ell}(k \neq \ell)$ is tangent to the circle

$$
C: \quad|z-a|=\frac{1}{2}\left(1-|a|^{2}\right)
$$

Lemma

For three mutually distinct points z_{1}, z_{2}, z_{3} on $\partial \mathbb{D}$, there exist a point $\lambda \in \partial \mathbb{D}$ and a point $a \in \mathbb{D}$ such that

$$
B\left(z_{1}\right)=B\left(z_{2}\right)=B\left(z_{3}\right)=\lambda, \quad \text { where } \quad B(z)=z\left(\frac{z-a}{1-\bar{a} z}\right)^{2} .
$$

Proof. Set

$$
\lambda=z_{1} z_{2} z_{3}, \quad a=\frac{\left|z_{1}-z_{2}\right| z_{3}+\left|z_{2}-z_{3}\right| z_{1}+\left|z_{3}-z_{1}\right| z_{2}}{\left|z_{1}-z_{2}\right|+\left|z_{2}-z_{3}\right|+\left|z_{3}-z_{1}\right|}
$$

Then $B\left(z_{1}\right)=B\left(z_{2}\right)=B\left(z_{3}\right)=\lambda$.

Corollary and Lemma gives an another proof of Chapple-Euler formula (both necessity and sufficiency!)

An inscribed ellipse and the circumscribed circle

Remark:

- There are many inscribed ellipses for a triangle $z_{1} z_{2} z_{3}$.
- When the point a tends to the line joining z_{1}, z_{2}, the point b converges to the point z_{3}.

Lemma

For three mutually distinct points z_{1}, z_{2}, z_{3} on $\partial \mathbb{D}$ and every point a on the interior of triangle $z_{1} z_{2} z_{3}$, there exist a point $\lambda \in \partial \mathbb{D}$ and a Blaschke product B of degree 3 with zeros at the origin and a such that

$$
B\left(z_{1}\right)=B\left(z_{2}\right)=B\left(z_{3}\right)=\lambda
$$

Proof. Set $\lambda=z_{1} z_{2} z_{3}$, and $b=\frac{1}{1-|a|^{2}}\left(z_{1}+z_{2}+z_{3}-\bar{a} \lambda\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right)-a+\bar{a}^{2} \lambda\right)$. Then we have

$$
B(z)=z \cdot \frac{z-a}{1-\bar{a} z} \cdot \frac{z-b}{1-\bar{b} z} .
$$

An extension of Chapple-Eu $2 r$ formula

Proposition

For any triangle that is inscribed in the unit circle, an ellipse is inscribed in the triangle if and only if the ellipse is associated with a Blaschke product of degree 3.

Theorem (An extension of Chapple-Euler)

Let $A B C$ be the triangle with vertices at $A(\alpha), B(\beta), C(\gamma) \in \partial \mathbb{D}$, and a a one of the focus of the ellipse inscribed in the triangle $A B C$. Then, the other focus b is uniquely determined by

$$
b=\frac{1}{1-|a|^{2}}\left(\alpha+\beta+\gamma-\bar{a} \lambda\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right)-a+\bar{a}^{2} \lambda\right),
$$

and the sum of the distance between two focus points a, b and each point on the ellipse is given by $|1-\bar{a} b|$.

Conversely, for each pair of points $a, b \in \mathbb{D}$, there is a triangle which is inscribed in the unit circle and inscribes the ellipse $|z-a|+|z-b|=|1-\bar{a} b|$.

第2部 省略

