Triangular spiral tilings and origami

Takamichi SUSHIDA*

Akio HIZUME \dagger and Yoshikazu YAMAGISHI \dagger

*Graduate course of applied mathematics and informatics, †Department of applied mathematics and informatics,

Ryukoku University

Mathematical Software And Free Documents XVI KYOTO UNIVERSITY

March 19, 2013

Table of contents

(i) Spiral phyllotaxis

(ii) Quadrilateral spiral multiple tilings

(iii) Triangular spiral multiple tilings

(iv) Main theorems for triangular spiral multiple tilings

Spiral phyllotaxis

Phyllotaxis is the arrangement of leaves and other organs of plants.

Spiral phyllotaxis: "Sunflower" and "Pine cone" and so on.

The golden section:

$$\tau = \frac{1 + \sqrt{5}}{2} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}}.$$

The fibonacci sequence:

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 \cdots$

The lucas sequence:

 $2, 1, 3, 4, 7, 11, 18, 29, 47, 76, \cdots$

Figure: Capitulum of sunflower

counterclockwise: 89 spirals clockwise: 55 spirals

Mathematical studies of phyllotaxis

Mathematical studies of phyllotaxis were started by people such as Bravais brothers in the first half of 19th century.

Comprehensive text of phyllotaxis:

1994: Roger.V.Jean, Phyllotaxis, A Systemic Study in Plant Morphogenesis, Cambridge University Press.

Figure: Bravais's sketch ? (http://www.math.smith.edu/phyllo: PHYLLOTAXIS)

Experiment:

1996: S.Douady and Y.Couder, Phyllotaxis as a Dynamical Self Organizing Process, J. Theor. Biol, 178, 255-274, 275-294, 295-312.

■ Bifurcation structure of a dynamical system:

2002: P.Atela, C.Gole and S.Hotton, A dynamical system for plant pattern formation: A rigorous analysis, J.Nonlinear Sci. Vol. 12, pp. 641-676.

Mathematical models:

2006: R.S.Smith at.el, A plausible model of phyllotaxis, Proc. Nat. Acad. Sci. 103 (5) 1301-1306.

2012: Y.Tanaka and M.Mimura, Reaction-diffusion model for inflorescence of sunflower, The 3rd Taiwan-Japan joint workshop for young scholars in applied mathematics, National Taiwan University.

Mathematical studies of spiral tilings

2008: A.Hizume, Fibonacci Tornado, in: Proceedings of the 11th Bridges Conference, 485-486.

2009: A.Hizume and Y.Yamagishi, Real Tornado, in: Proceedings of the 12th Bridges Conference, 239-242.

2012: T.Sushida, A.Hizume and Y.Yamagishi, Triangular spiral tilings, J.Phys.A: Math.Theor. 45, 23, 235203.

Figure: Triangular spiral tilings with phyllotactic patterns

Quadrilateral spiral multiple tilings

Let $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \backslash \mathbb{R}$. Let m, n > 0 be relatively prime integers.

We denote a point with the complex coordinate ζ^j , $j \in \mathbb{Z}$ by A_j .

We consider a spiral lattice $S = \{A_j\}_{j \in \mathbb{Z}}$.

Figure: Quadrilateral spiral multiple tilings: Each j denotes a position of a point A_j , $j \in \mathbb{Z}$. r = 0.94, $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, (a) (m, n) = (5, 8), (b) (m, n) = (13, 3)

Quadrilateral spiral multiple tilings

Let $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \setminus \mathbb{R}$. Let m, n > 0 be relatively prime integers.

We denote a point with the complex coordinate ζ^j , $j \in \mathbb{Z}$ by A_j .

We consider a spiral lattice $S = \{A_j\}_{j \in \mathbb{Z}}$.

Figure: Quadrilateral spiral multiple tilings: Each j denotes a position of a point A_j , $j \in \mathbb{Z}$. r = 0.94, $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, (a) (m, n) = (5, 8), (b) (m, n) = (13, 3)

Definition 1

A tiling of a two dimensional manifold X is a family $T = \{T_j\}_j$ of topological disks $T_j \subset X$ which satisfies the following conditions:

$$X = \bigcup_{j} T_j, \quad \operatorname{int}(T_j) \cap \operatorname{int}(T_k) = \emptyset \quad (j \neq k).$$

Each T_j is called a tile.

Let $v \neq 0$ be an integer. Let $C_v := \mathbb{C}/2\pi v \sqrt{-1}\mathbb{Z}$ be a cylinder.

We denote $\mathbb C$ which punctures at the origin O by $\mathbb C^*:=\mathbb C\backslash \,\{0\}.$

By the exponential map $\exp: C_v \to \mathbb{C}^*$, $w + 2\pi v \sqrt{-1}\mathbb{Z} \to z = e^w$,

 C_v is a covering space of \mathbb{C}^* of a degree |v|.

Let $\mathcal{T}' = \{T'_j\}_j$ be a tiling of C_v . Then $\exp(\mathcal{T}') = \{\exp(T'_j)\}_{T'_j \in \mathcal{T}'}$ is a multiple tiling of \mathbb{C}^* of multiplicity |v|.

Definition 2

Let V' be an additive subgroup of C_v . We say that \mathcal{T}' admits a transitive action by V' if

(i)
$$\forall T' \in \mathcal{T}'$$
, $\forall \eta \in V'$, $T' + \eta \in \mathcal{T}'$ and

(ii) $\forall T'_1, T'_2 \in \mathcal{T}'$, $\exists \eta \in V'$ such that $T'_2 = T'_1 + \eta$.

If \mathcal{T}' admits a transitive action by an additive subgroup $\xi\mathbb{Z}$ which is generated by a single element $\xi\in C_v$,

then $\mathcal{T} = \exp(\mathcal{T}')$ is called a spiral multiple tiling of multiplicity |v|.

Let $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \setminus \mathbb{R}$. Let m, n > 0 be relatively prime integers. We denote the principal argument of $z \in \mathbb{C}^*$ by $-\pi < \arg(z) \le \pi$. We suppose that $T_0 := \Box A_0 A_m A_{m+n} A_n$ is a quadrilateral in \mathbb{C}^* in this order of vertices.

Let

$$\xi_m = m \log(r) + \sqrt{-1} \left(m\theta - 2\pi [[\frac{m\theta}{2\pi}]] \right) \in \log(\zeta^m),$$

$$\xi_n = n \log(r) + \sqrt{-1} \left(n\theta - 2\pi [[\frac{n\theta}{2\pi}]] \right) \in \log(\zeta^n),$$

where $[[x]] \in \mathbb{Z}$ is an integer which is the nearest to $x \in \mathbb{R}$ such that $-\frac{1}{2} < \langle x \rangle := x - [[x]] \le \frac{1}{2}$. We obtain a tiling $\mathcal{T}' := \{T'_0 + k_1\xi_m + k_2\xi_n\}_{k_1,k_2\in\mathbb{Z}}$ of C_v . where T'_0 is a component of $\log(T_0)$ which has 0, ξ_m , $\xi_m + \xi_n$ and ξ_n on its boundary.

Figure: A quadrilateral spiral tiling and a tiling of C_v , v = 1: r = 0.94, $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, (m, n) = (5, 8)

$$\xi_j = j \log(r) + \sqrt{-1}(j(\theta + 2\pi\ell) + 2\pi kv), \ k \in \mathbb{Z}, \ \ell \in \mathbb{Z}$$

Figure: A quadrilateral spiral tiling and a tiling of C_v , v = 1: r = 0.94, $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, (m, n) = (5, 8)

$$\xi_j = j \log(r) + \sqrt{-1}(j(\theta + 2\pi\ell) + 2\pi kv), \ k \in \mathbb{Z}, \ \ell \in \mathbb{Z}$$

Figure: A quadrilateral spiral multiple tiling and a tiling of C_v , v = 2: r = 0.94, $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, (m, n) = (13, 3)

$$\xi_j = j \log(r) + \sqrt{-1}(j(\theta + 2\pi\ell) + 2\pi kv), \ k \in \mathbb{Z}, \ \ell = 2\ell' + 1, \ \ell' \in \mathbb{Z}$$

Figure: A quadrilateral spiral multiple tiling and a tiling of C_v , v = 2: r = 0.94, $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, (m, n) = (13, 3)

$$\xi_j = j \log(r) + \sqrt{-1}(j(\theta + 2\pi\ell) + 2\pi kv), \ k \in \mathbb{Z}, \ \ell = 2\ell' + 1, \ \ell' \in \mathbb{Z}$$

Let $a, b \in \mathbb{Z}$ be integers such that bm - an = 1.

Then we obtain the followings:

$$\xi := b\xi_m - a\xi_n = \log(r) + \sqrt{-1}(\theta + 2\pi\ell) \in \log(\zeta), \quad \ell = a[[\frac{n\theta}{2\pi}]] - b[[\frac{m\theta}{2\pi}]].$$
$$v := m[[\frac{n\theta}{2\pi}]] - n[[\frac{m\theta}{2\pi}]] = \frac{1}{2\pi}(n\arg(\zeta^m) - m\arg(\zeta^n)).$$

In C_v , we have $[[\frac{n\theta}{2\pi}]]\xi_m - [[\frac{m\theta}{2\pi}]]\xi_n \equiv 0$,

 $m\xi \equiv \xi_m, \ n\xi \equiv \xi_n \text{ and } \xi_m \mathbb{Z} + \xi_n \mathbb{Z} \equiv \xi \mathbb{Z} \mod 2\pi v \sqrt{-1} \mathbb{Z}.$

Let
$$\mathcal{T}' = \{T'_0 + k_1\xi_m + k_2\xi_n\}_{k_1,k_2\in\mathbb{Z}} = \{T'_0 + k\xi\}_{k\in\mathbb{Z}}.$$

Then \mathcal{T}' is a tiling of C_v that admits a transitive action by $\xi\mathbb{Z}$ and we have $\mathcal{T} = \exp(\mathcal{T}')$. Let $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \setminus \mathbb{R}$. Let m, n > 0 be relatively prime integers. We denote \mathbb{C} which punctures at the origin O by $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$. We denote the principal argument of $z \in \mathbb{C}^*$ by $-\pi < \arg(z) \leq \pi$.

Proposition 3

Suppose that $\zeta^m, \zeta^n \notin \mathbb{R}_-$. If $T_0 := \Box A_0 A_m A_{m+n} A_n$ is a quadrilateral in \mathbb{C}^* in this order of vertices, then a family of quadrilaterals

$$\mathcal{T} = \{T_j := \Box A_j A_{j+m} A_{j+m+n} A_{j+n}\}_{j \in \mathbb{Z}}$$
(1)

is a quadrilateral spiral multiple tiling of multiplicity $\left|v\right|$, where v is given by

$$v = \frac{1}{2\pi} (n \arg\left(\zeta^{m}\right) - m \arg\left(\zeta^{n}\right)).$$
(2)

In (1), a combinational index (m, n) is called a parastichy pair.

Definition 4

- (i) A parastichy pair (m, n) is an opposed parastichy pair if (arg (ζ^m))(arg (ζⁿ)) < 0.
- (ii) A parastichy pair (m, n) is a non-opposed parastichy pair if $(\arg(\zeta^m))(\arg(\zeta^n)) > 0$.

Figure: r = 0.94, (m, n) = (5, 8), (a) $\theta = 2\pi\tau$, (b) $\theta = 2\pi\tau + \varepsilon$

For $x \in \mathbb{R}$, let

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}} = [a_0, a_1, a_2, \dots], \ a_0 \in \mathbb{Z}, \ a_i \in \mathbb{Z}_+, \ i \ge 1$$

be a continued fraction expansion of x.

Define the sequence

$$\{p_i\}_{i\geq 0}, \ \{q_i\}_{i\geq 0}, \ \{p_{i,k}\}_{i\geq 0,0< k< a_{i+1}}, \ \{q_{i,k}\}_{i\geq 0,0< k< a_{i+1}}$$

by $p_0 = a_0, q_0 = 1$; $p_1 = a_0a_1 + 1, q_1 = a_1$;
 $p_i = p_{i-2} + a_ip_{i-1}, q_i = q_{i-2} + a_iq_{i-1}, i \geq 2$; and
 $p_{i,k} = p_{i-1} + kp_i, q_{i,k} = q_{i-1} + kq_i, i \geq 0, 0 < k < a_{i+1}.$
 $\frac{p_i}{q_i} = [a_0, a_1, \cdots, a_i]$ is called a principal convergent of x and
 $\frac{p_{i,k}}{q_{i,k}} = [a_0, a_1, \cdots, a_i, k]$ is called an intermediate convergent of x .

Lemma 5

Let 0 < x < 1. Let m, n, a, b be positive integers such that

$$\frac{a}{m} < x < \frac{b}{n}, \quad bm - an = 1.$$

Then $\frac{a}{m}$, $\frac{b}{n}$ are principal or intermediate convergents of x, at least one of which is principal.

Let $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \setminus \mathbb{R}$. Let m, n > 0 be relatively prime integers.

Let a, b be integers such that bm - an = 1.

Proposition 6

Suppose that $\zeta^m, \zeta^n \notin \mathbb{R}_-$.

Suppose that $\mathcal{T} = \{T_j := \Box A_j A_{j+m} A_{j+m+n} A_{j+n}\}_{j \in \mathbb{Z}}$ is a quadrilateral spiral multiple tiling of a multiplicity |v| and (m, n) is an opposed parastichy pair.

Then $\frac{a}{m}$, $\frac{b}{n}$ are principal or intermediate convergents of $\frac{1}{v}\left(\frac{\theta}{2\pi}+\ell\right)$, at least one of which is principal, where ℓ is given by $\ell = a[[\frac{n\theta}{2\pi}]] - b[[\frac{m\theta}{2\pi}]]$.

Proof of proposition 6:

We may suppose that $\arg(\zeta^n) < 0 < \arg(\zeta^m)$ without loss of generality. So we have

$$\begin{split} \langle \frac{n\theta}{2\pi} \rangle &= \frac{n\theta}{2\pi} - [[\frac{n\theta}{2\pi}]] < 0 < \frac{m\theta}{2\pi} - [[\frac{m\theta}{2\pi}]] = \langle \frac{m\theta}{2\pi} \rangle \\ \mathbf{By} \ \ell &= a[[\frac{n\theta}{2\pi}]] - b[[\frac{m\theta}{2\pi}]] \text{ and } v = m[[\frac{n\theta}{2\pi}]] - n[[\frac{m\theta}{2\pi}]], \text{ We have} \\ & [[\frac{m\theta}{2\pi}]] = av - m\ell, \ [[\frac{n\theta}{2\pi}]] = bv - n\ell. \end{split}$$

Thus we obtain

$$n\left(\frac{\theta}{2\pi} + \ell\right) - bv < 0 < m\left(\frac{\theta}{2\pi} + \ell\right) - av,$$

and hence

$$\frac{a}{m} < \frac{1}{v} \left(\frac{\theta}{2\pi} + \ell \right) < \frac{b}{n}, \ bm - an = 1.$$

П

Triangular spiral multiple tilings

Let

$$\mathcal{T} = \{T_j := \Box \mathbf{A}_j \mathbf{A}_{j+m} \mathbf{A}_{j+m+n} \mathbf{A}_{j+n}\}_{j \in \mathbb{Z}}$$

be a quadrilateral spiral multiple tiling of multiplicity |v|.

If three vertices of a quadrilateral $T_0 = \Box A_0 A_m A_{m+n} A_n$ lie on a same line, then \mathcal{T} becomes a triangular spiral multiple tiling.

Figure: Deformation between quadrilateral tilings through a triangular tiling with an opposed parastichy pair (3,5)

Figure: Parastichy transition: $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, $(2,3) \rightarrow (5,3) \rightarrow (5,8)$

Figure: Deformation between quadrilateral tilings through a triangular tiling with a non-opposed parastichy pair (3,5)

Questions

(i) For each pair (m, n), which complex numbers $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \setminus \mathbb{R}$ produce triangular spiral multiple tilings ?

(ii) Which triangles admit spiral multiple tilings ?

Let

$$\phi_{m,k}(z) = \frac{z^k - 1}{z^m - 1}$$
(3)

be a rational function with one complex variable.

Lemma 7

Let $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{C} \setminus \mathbb{R}$. Let m, n > 0 be relatively prime integers. Suppose that $\zeta^m \neq 1$. Then the following conditions are mutually equivalent.

- (i) The three points A_m , A_{m+n} and A_n lie on a same line.
- (ii) The four points O, A_0 , A_m and A_n lie on a same circle.

(iii)
$$r^m \sin n\theta - r^n \sin m\theta + \sin (m-n)\theta = 0.$$

(iv) $\phi_{m,m-n}(\zeta) \in \mathbb{R}$.

Main theorems for triangular spiral multiple tilings

We proved the following theorem about triangular spiral multiple tilings with opposed parastichy pairs.

Theorem A

Let m, n > 0 be relatively prime integers. Let v be an integer which satisfies $0 < |v| < \frac{\max\{m,n\}}{2}$.

Let $P_{m,n,v}$ be the set of generators $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \setminus \mathbb{R}$ for triangular spiral multiple tilings of multiplicity |v|with an opposed parastichy pair (m, n).

Then $P_{m,n,v}$ is a branch of a real algebraic curve parameterized by $\theta = \arg(\zeta)$.

Moreover, the union $P = \bigcup_{v>0} \bigcup_{(m,n)} P_{m,n,v}$ is a dense subset of \mathbb{D} .

Figure: The set of generators for triangular spiral tilings of multiplicity v = 1, with opposed parastichy pairs (m, n): A rational number x on the unit circle denotes $e^{2\pi\sqrt{-1}x}$

Figure: Parastichy transition: $\theta = 2\pi\tau$, $\tau = \frac{1+\sqrt{5}}{2}$, $(2,3) \rightarrow (5,3) \rightarrow (5,8)$ Principal convergents of the Golden section $\tau = \frac{1+\sqrt{5}}{2}$:

$$\frac{1}{1}, \frac{3}{2}, \frac{8}{5}, \frac{21}{13}, \cdots, \tau, \cdots, \frac{34}{21}, \frac{13}{8}, \frac{5}{3}, \frac{2}{1}$$

Parastichy transition:

$$(2,3) \to (5,3) \to (5,8) \to (13,8) \to (13,21), \cdots$$

Next, we proved the following theorem about triangular spiral multiple tilings with non-opposed parastichy pairs.

Theorem B

Let m, n > 0 be relatively prime integers. Let v be an integer which satisfies $0 < |v| < \frac{n}{2}$.

Let $Q_{m,n,v}$ be the set of generators $\zeta = re^{\sqrt{-1}\theta} \in \mathbb{D} \setminus \mathbb{R}$ for triangular spiral multiple tilings of multiplicity |v|with a non-opposed parastichy pair (m, n).

Then $Q_{m,n,v}$ is a branch of a real algebraic curve parameterized by $r = |\zeta|$.

Moreover, the union $Q_v = \bigcup_{(m,n)} Q_{m,n,v}$ is a dense subset of \mathbb{D} .

Triangles which admit spiral multiple tilings

Let
$$\arg \zeta^m = -\arg \zeta^n = \pi/3$$
, and let $v = 1$.
 $n \arg \zeta^m - m \arg \zeta^n = 2\pi \cdot 1 \Rightarrow m + n = 6$. $(m, n) = (1, 5)$, $\theta = \pi/3$.
 $r^m \sin n\theta - r^n \sin m\theta + \sin (m - n)\theta = 0$ has a unique root
 $0 < r = 0.7548 \cdots < 1$.

Figure: A spiral tiling by equilateral triangles

Let $\arg \zeta^m = \arg \zeta^n = \pi/3$, and let v = 1.

 $n \arg \zeta^m - m \arg \zeta^n = 2\pi v \Rightarrow -m + n = 6.$ $(m, n) = (1, 7), \ \theta = \pi/3.$

However, $r^m \sin (m+n)\theta - r^{m+n} \sin m\theta - \sin n\theta = 0$ doesn't have a solution 0 < r < 1.

Hence we can't obtain a spiral tiling by equilateral triangles, with an non-opposed parastichy pair.

Figure: A equilateral triangle of the case of non-opposed parastichy pair

Let
$$\arg \zeta^m = \pi/3$$
, $\arg \zeta^n = -\pi/6$, and let $v = 1$.
 $n \arg \zeta^m - m \arg \zeta^n = 2\pi v \Rightarrow m + 2n = 12$
 $(m, n) = (2, 5), \ \theta = -5\pi/6.$

The equation $r^m \sin n\theta - r^n \sin m\theta + \sin (m-n)\theta = 0$

has a unique root $0 < r = 0.9214 \dots < 1$.

Figure: A spiral tiling by right triangles with angles 30° , 60° , 90°

Let
$$\arg \zeta^m = \pi/3$$
, $\arg \zeta^n = \pi/6$, and let $v = 1$
 $n \arg \zeta^m - m \arg \zeta^n = 2\pi v \Rightarrow -m + 2n = 12$
 $(m, n) = (2, 7)$, $\theta = -5\pi/6$.

The equation $r^m \sin(m+n)\theta - r^{m+n} \sin m\theta - \sin n\theta = 0$

has two solutions $r = 0.883 \cdots$ and $0.754 \cdots$.

Figure: Spiral tilings by right triangles with angles 30° , 60° , 90°

Origami for triangular spiral tilings

Figure: Origami sheets for a Fibonacci tornado: Solid lines are mountain fold and dashed lines are valley fold.

Figure: Origami sheets for a spiral tiling by regular triangles: Solid lines are mountain fold and dashed lines are valley fold.

Figure: Top-down view of an origami of a spiral tiling by regular triangles.

Takamichi SUSHIDA Akio HIZUME† and Yoshikazu YAMAGISHI† Triang

Figure: An origami sheet for a spiral multiple tiling by right triangles with angles $30^\circ,\,60^\circ,\,90^\circ$

In the right figure, solid lines are mountain fold and dashed lines are valley fold.

These figures were chosen the cover page of Journal of Physics A: Mathematical and Theoretical. 45. 23, 2012.

Figure: Top-down view

Thank you for your attention...