
Tutorial for CMC-Lab

Shimpei Kobayashi
Department of Mathematics,

Kobe University,

1 Introduction

In this note, we will give a instruction for CMC-Lab software. CMC-Lab was
programmed by Nicolas Schmitt for a research of constant mean curvature
surfaces around 2000 – 2001.

2 Installation of CMC-Lab

One can download CMC-Lab software from the following web page:

1. Linux version (Redhat, Debian etc...)
⇒ http://www.gang.umass.edu/software/cmclab/index.html

2. Java version
⇒ http://tmugs.math.metro-u.ac.jp/javacmclab030926.zip

Figure 1: CMC bubbletons in R3, S3 and H3.
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The detailed instruction for the installation of CMC-Lab is given in

• Installation guide for linux version
http://www.math.sci.kobe-u.ac.jp/˜ kobayasi/GPS/tex html files/GPSCMCLab/

• Linux version is more advantageous than java version, however java
version is the only choice for windows users.

3 Dorfmeister-Pedit-Wu method

In this section, we will give a brief explanation of theory of Dorfmeister,
Pedit, Wu ([2]) to construct CMC surfaces, which is used for the CMC-Lab
software.

First, we identify R3 and su(2) = ImH as follows, where H is the quater-
nion.

R3 ⇐⇒ su(2) =
{
A ∈ Mat(2, C) ; Āt = −A

}
.

Therefore, for example, we have the correspondence between R3 and su(2)
as follows:

Adjoint group actions on su(2) by SU(2)
2:1⇐⇒ Rotations of R3 by SO(3).

Now we give a brief explanation of Dorfmeister, Pedit, Wu methods. The
methods can be divided as the following 4 steps. Details can be found in [2]
and [3].

Step1 : Let D be a simply connected domain in C.

◦ η(z, λ) =
∞∑

n=−1

Anλndz.

◦ 2 × 2 matrix differential form and Tr η = 0.

◦ diagonal even in λ, off-diagonal odd in λ.

◦ Aj are holomorphic with respect to z ∈ D.

◦ detA−1 6= 0.

Step2 : Solve the ODE dC = Cη.
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Step3 : Iwasawa decomposition: C = FW+

◦ F = F (z, z̄, λ) is unitary for all z ∈ D, λ ∈ S1.

◦ W+ =
∞∑

n=0

Wn,+λn.

Step4 : (Sym-Bobenko-Formula)
Ψλ(z) = − 1

2H

{(
iλ d

dλ
F

)
F−1 + F i

2
( 1 0

0 −1 ) F−1
}

⇒
{

Ψλ is a CMC-immersion from D to R3.
Every CMC-immersion can be obtained this way.

In fact, the solution C is in loop group of SL(2, C), which is a infinite di-
mensional Lie group. We do not give the definitions of loop groups here, and
refer the article [2] to readers. Analogously F is in loop group of SU(2), and
W+ is in plus loop group of SL(2, C). We also refer the article [1] to readers
for “Sym-Bobenko formula” in Step 4. We use the notation ΛSL(2, C) (resp.
ΛSU(2) and Λ+SL(2, C)) for the loop group of SL(2, C) (resp. loop group
of SU(2) and the plus loop group of SL(2, C)).

4 Algorithm for CMC-Lab

For the implementation of Dorfmeister, Pedit, Wu method, there are two
main issues, which are Step 2 and Step3 in the previous section. In Step2,
dC = Cη is a first order 2×2 matrix differential equation. Thus we have many
algorithms, for example Runge-Kutta method. Therefore we concentrate
the algorithm for Step 3, which is Iwasawa decomposition. We quote the
following lemma from [4].

Lemma 1 Set

W = span{C1, λC1, · · · , C2, λC2, · · · } .

Let C ∈ ΛSL2(C), and C1, C2 be the columns of C. If x, y ∈ W ∩ (λW )⊥,
then

〈x, y〉C2 = 〈x, y〉H and dim(W ∩ (λW )⊥) = 2 ,

where

〈x, y〉H =
1

2πi

∫

Cr

〈x, y〉C2

dλ

λ
.
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Figure 2: genus one CMC surfaces (the left two pictures) and a periodic
CMC surface (the right picture).

Then we will state the main theorem.

theorem 2 Set

P j : Cj → λW (projection to λW ) .

and
P = (P 1, P 2) .

Then P = CB+ for some loop B+ with positive Fourier terms. Set

G = (G1, G2) = C − P .

Take unitary part of G via Hilbert norm, that is, G = FB0

B0 =

(
|G1| 〈G2, G1/|G1|〉
0 |G2 − G1/|G1|〈G2, G1/|G1|〉|

)
.

Then C = F · B0(I − B+)−1 is the Iwasawa decomposition of C.

Proof 1 Clearly, G is in W∩(λW )⊥, thus Lemma 1 implies that the columns
G1 and G2 are the basis of W ∩ (λW )⊥. Then we can do the Gram-Schmidt
orthogonalization for G in C2. ¤

Theorem 2 implies that if one can find the projection P , then one can com-
pute the Iwasawa decomposition.
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4.1 Algorithm of Step 3

In this subsection, we will give the algorithm for Step 3 in previous section.
Next lemma is important for a computation of the projection P defined in
previous section.

Proposition 3 Set

A = {a1, · · · , an} : a basis for Cn.

Take 0 ≤ r ≤ n,

p : Cn → Cn : projection to the subspace spanned by {a1, · · · , ar},

A = (a1, · · · , an) ∈ SL(2, C) ,

and

P̃ =

(
Ir 0
0 On−r

)
∈ Mat(n, C) .

Then p can be written as follows:

1 AP̃A−1,

2 UP̃ Ū t, where A = UT is the QR-decomposition of A.

Proof 2 The matrix P̃ is the projection to the subspace spanned by {e1, · · · , er}
of the space spanned by the standard basis {e1, · · · , en} for Cr. Therefore
one can write the projection p to the subspace spanned by {a1, · · · , ar} of the
space spanned by {a1, · · · , an} for Cn as 1. The matrix T commute P̃ , thus
AP̃A−1 = UTP̃T−1U−1 = UP̃U−1. And U is unitary implies that U−1 = Ū t.
¤

Computing a inverse matrix takes long time for a numerical computation.
Therefore we will use the expression 2 of Proposition 3 as the projection p.
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Now we will apply Proposition 3 for the actual object. We take a finite
part of Ã ∈ ΛSL(2, C) as follows:

A =

(
Σn

k=−na11
k λk Σn

k=−na
12
k λk

Σn
k=−na21

k λk Σn
k=−na

22
k λk

)
∈ SL(2, C).

Set r is even, r/2 ≤ n,

a1 =

(
Σn

k=−na11
k λk

Σn
k=−na21

k λk

)
, a2 =

(
Σn

k=−na12
k λk

Σn
k=−na22

k λk

)

and
λW = span

{
λa1, · · · , λr/2a1, λa2, · · · , λr/2a2

}
.

Then the projection p can be computed by Proposition 3 as follows:

(U0, 0)P̃ (U0, 0)
t
,

where (A0, 0) = (U0, 0)

(
T0 0
0 0

)
is QR-decomposition of A0.

A0 =



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



Figure 3: A CMC surface of revolution (the left picture) and CMC cylinders
(the right pictures).

5 Some remarks

• 1984, D. Hoffman started to use computer graphics for studying sur-
faces. (W. Meeks and he proved the embeddedness of Costa minimal
surface [5].)

• 1998, D. Lerner and I. Sterling made the first implementation of
Dorfmeister-Pedit-Wu method [6].

6 Related softwares

• JavaView (which is used for a visualization of java version CMC-Lab).
http://www.javaview.de/

• GeomView (which is a graphics viewer corresponding to various for-
mats). http://www.geomview.org/

• Mesh (which construct minimal surfaces).
http://www.msri.org/publications/sgp/jim/software/

• Surface evolver (which is a visualization tool for surfaces using varia-
tional problems). http://www.susqu.edu/facstaff/b/brakke/evolver/
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