Tutorial for CMC-Lab

Shimpei Kobayashi
Department of Mathematics, Kobe University,

1 Introduction

In this note, we will give a instruction for CMC-Lab software. CMC-Lab was programmed by Nicolas Schmitt for a research of constant mean curvature surfaces around 2000 - 2001 .

2 Installation of CMC-Lab

One can download CMC-Lab software from the following web page:

1. Linux version (Redhat, Debian etc...)
\Rightarrow http://www.gang.umass.edu/software/cmclab/index.html
2. Java version
\Rightarrow http://tmugs.math.metro-u.ac.jp/javacmclab030926.zip

Figure 1: CMC bubbletons in \mathbb{R}^{3}, S^{3} and H^{3}.

The detailed instruction for the installation of CMC-Lab is given in

- Installation guide for linux version
http://www.math.sci.kobe-u.ac.jp/~ kobayasi/GPS/tex_html_files/GPSCMCLab/
- Linux version is more advantageous than java version, however java version is the only choice for windows users.

3 Dorfmeister-Pedit-Wu method

In this section, we will give a brief explanation of theory of Dorfmeister, Pedit, Wu ([2]) to construct CMC surfaces, which is used for the CMC-Lab software.

First, we identify \mathbb{R}^{3} and $s u(2)=\operatorname{Im} \mathbb{H}$ as follows, where \mathbb{H} is the quaternion.

$$
\mathbb{R}^{3} \Longleftrightarrow s u(2)=\left\{A \in \operatorname{Mat}(2, \mathbb{C}) ; \bar{A}^{t}=-A\right\}
$$

Therefore, for example, we have the correspondence between \mathbb{R}^{3} and $s u(2)$ as follows:

Adjoint group actions on $s u(2)$ by $S U(2) \stackrel{2: 1}{\Longleftrightarrow}$ Rotations of \mathbb{R}^{3} by $S O(3)$.
Now we give a brief explanation of Dorfmeister, Pedit, Wu methods. The methods can be divided as the following 4 steps. Details can be found in [2] and [3].

Step1: Let \mathcal{D} be a simply connected domain in \mathbb{C}.

- $\eta(z, \lambda)=\sum_{n=-1}^{\infty} A_{n} \lambda^{n} d z$.
- 2×2 matrix differential form and $\operatorname{Tr} \eta=0$.
- diagonal even in λ, off-diagonal odd in λ.
- A_{j} are holomorphic with respect to $z \in \mathfrak{D}$.
- $\operatorname{det} A_{-1} \neq 0$.

Step2 : Solve the ODE $d C=C \eta$.

Step3: Iwasawa decomposition: $C=F W_{+}$

$$
\begin{aligned}
& \circ F=F(z, \bar{z}, \lambda) \text { is unitary for all } \mathrm{z} \in \mathfrak{D}, \lambda \in \mathbb{S}^{1} . \\
& \circ W_{+}=\sum_{n=0}^{\infty} W_{n,+} \lambda^{n} .
\end{aligned}
$$

Step4: (Sym-Bobenko-Formula)

$$
\begin{aligned}
\Psi_{\lambda}(z) & =-\frac{1}{2 H}\left\{\left(i \lambda \frac{d}{d \lambda} F\right) F^{-1}+F \frac{i}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) F^{-1}\right\} \\
& \Rightarrow\left\{\begin{array}{l}
\Psi_{\lambda} \text { is a CMC-immersion from } \mathfrak{D} \text { to } \mathbb{R}^{3} . \\
\text { Every CMC-immersion can be obtained this way. }
\end{array}\right.
\end{aligned}
$$

In fact, the solution C is in loop group of $S L(2, \mathbb{C})$, which is a infinite dimensional Lie group. We do not give the definitions of loop groups here, and refer the article [2] to readers. Analogously F is in loop group of $S U(2)$, and W_{+}is in plus loop group of $S L(2, \mathbb{C})$. We also refer the article [1] to readers for "Sym-Bobenko formula" in Step 4 . We use the notation $\Lambda S L(2, \mathbb{C})$ (resp. $\Lambda S U(2)$ and $\Lambda^{+} S L(2, \mathbb{C})$) for the loop group of $S L(2, \mathbb{C})$ (resp. loop group of $S U(2)$ and the plus loop group of $S L(2, \mathbb{C})$).

4 Algorithm for CMC-Lab

For the implementation of Dorfmeister, Pedit, Wu method, there are two main issues, which are Step 2 and Step3 in the previous section. In Step2, $d C=C \eta$ is a first order 2×2 matrix differential equation. Thus we have many algorithms, for example Runge-Kutta method. Therefore we concentrate the algorithm for Step 3, which is Iwasawa decomposition. We quote the following lemma from [4].

Lemma 1 Set

$$
W=\operatorname{span}\left\{C^{1}, \lambda C^{1}, \cdots, C^{2}, \lambda C^{2}, \cdots\right\}
$$

Let $C \in \Lambda S L_{2}(\mathbb{C})$, and C^{1}, C^{2} be the columns of C. If $x, y \in W \cap(\lambda W)^{\perp}$, then

$$
\langle x, y\rangle_{\mathbb{C}^{2}}=\langle x, y\rangle_{H} \text { and } \operatorname{dim}\left(W \cap(\lambda W)^{\perp}\right)=2,
$$

where

$$
\langle x, y\rangle_{H}=\frac{1}{2 \pi i} \int_{C_{r}}\langle x, y\rangle_{\mathbb{C}^{2}} \frac{d \lambda}{\lambda} .
$$

Figure 2: genus one CMC surfaces (the left two pictures) and a periodic CMC surface (the right picture).

Then we will state the main theorem.
theorem 2 Set

$$
\left.P^{j}: C^{j} \rightarrow \lambda W \quad \text { (projection to } \lambda W\right)
$$

and

$$
P=\left(P^{1}, P^{2}\right)
$$

Then $P=C B_{+}$for some loop B_{+}with positive Fourier terms. Set

$$
G=\left(G^{1}, G^{2}\right)=C-P
$$

Take unitary part of G via Hilbert norm, that is, $G=F B_{0}$

$$
B_{0}=\left(\begin{array}{cc}
\left|G^{1}\right| & \left\langle G^{2}, G^{1} /\right| G^{1}| \rangle \\
0 & \left.\left|G^{2}-G^{1} /\left|G^{1}\right|\left\langle G^{2}, G^{1} /\right| G^{1}\right|\right\rangle \mid
\end{array}\right) .
$$

Then $C=F \cdot B_{0}\left(I-B_{+}\right)^{-1}$ is the Iwasawa decomposition of C.
Proof 1 Clearly, G is in $W \cap(\lambda W)^{\perp}$, thus Lemma 1 implies that the columns G^{1} and G^{2} are the basis of $W \cap(\lambda W)^{\perp}$. Then we can do the Gram-Schmidt orthogonalization for G in \mathbb{C}^{2}.

Theorem 2 implies that if one can find the projection P, then one can compute the Iwasawa decomposition.

4.1 Algorithm of Step 3

In this subsection, we will give the algorithm for Step 3 in previous section. Next lemma is important for a computation of the projection P defined in previous section.

Proposition 3 Set

$$
\mathcal{A}=\left\{a_{1}, \cdots, a_{n}\right\} \quad: \text { a basis for } \mathbb{C}^{n}
$$

Take $0 \leq r \leq n$,
$p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$: projection to the subspace spanned by $\left\{a_{1}, \cdots, a_{r}\right\}$,

$$
A=\left(a_{1}, \cdots, a_{n}\right) \in \operatorname{SL}(2, \mathbb{C}),
$$

and

$$
\tilde{P}=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & O_{n-r}
\end{array}\right) \in \operatorname{Mat}(n, \mathbb{C}) .
$$

Then p can be written as follows:
$1 A \tilde{P} A^{-1}$,
$2 U \tilde{P} \bar{U}^{t}$, where $A=U T$ is the $Q R$-decomposition of A.
Proof 2 The matrix \tilde{P} is the projection to the subspace spanned by $\left\{e_{1}, \cdots, e_{r}\right\}$ of the space spanned by the standard basis $\left\{e_{1}, \cdots, e_{n}\right\}$ for \mathbb{C}^{r}. Therefore one can write the projection p to the subspace spanned by $\left\{a_{1}, \cdots, a_{r}\right\}_{\tilde{\sim}}$ of the space spanned by $\left\{a_{1}, \cdots, a_{n}\right\}$ for \mathbb{C}^{n} as 1 . The matrix T commute \tilde{P}, thus $A \tilde{P} A^{-1}=U T \tilde{P} T^{-1} U^{-1}=U \tilde{P} U^{-1}$. And U is unitary implies that $U^{-1}=\bar{U}^{t}$.

Computing a inverse matrix takes long time for a numerical computation. Therefore we will use the expression 2 of Proposition 3 as the projection p.

Now we will apply Proposition 3 for the actual object. We take a finite part of $\tilde{A} \in \Lambda S L(2, \mathbb{C})$ as follows:

$$
A=\left(\begin{array}{ll}
\sum_{k=-n}^{n} a_{k}^{11} \lambda^{k} & \sum_{k=-n}^{n} a_{k}^{12} \lambda^{k} \\
\sum_{k=-n}^{n} a_{k}^{21} \lambda^{k} & \sum_{k=-n}^{n} a_{k}^{22} \lambda^{k}
\end{array}\right) \in S L(2, \mathbb{C}) .
$$

Set r is even, $r / 2 \leq n$,

$$
a_{1}=\binom{\sum_{k=-n}^{n} a_{k}^{11} \lambda^{k}}{\sum_{k=-n}^{n} a_{k}^{21} \lambda^{k}}, \quad a_{2}=\binom{\sum_{k=-n}^{n} a_{k}^{12} \lambda^{k}}{\sum_{k=-n}^{n} a_{k}^{22} \lambda^{k}}
$$

and

$$
\lambda W=\operatorname{span}\left\{\lambda a_{1}, \cdots, \lambda^{r / 2} a_{1}, \lambda a_{2}, \cdots, \lambda^{r / 2} a_{2}\right\} .
$$

Then the projection p can be computed by Proposition 3 as follows:

$$
\left(U_{0}, 0\right) \tilde{P}{\overline{\left(U_{0}, 0\right)}}^{t}
$$

where $\left(A_{0}, 0\right)=\left(U_{0}, 0\right)\left(\begin{array}{cc}T_{0} & 0 \\ 0 & 0\end{array}\right)$ is QR-decomposition of A_{0}.

$$
A_{0}=\left(\begin{array}{cclc|cccc}
0 & & & & 0 & & & \\
a_{-n}^{11} & & & & a_{-n}^{12} & & & \\
\vdots & a_{-n}^{11} & & & \vdots & a_{-n}^{12} & & \\
\vdots & \vdots & \ddots & & \vdots & \vdots & \ddots & \\
\vdots & \vdots & & a_{-n}^{11} & \vdots & \vdots & & a_{-n}^{12} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{n-1}^{11} & a_{n-2}^{11} & \cdots & a_{n-r / 2}^{11} & a_{n-1}^{12} & a_{n-2}^{12} & \cdots & a_{n-r / 2}^{12} \\
\hline 0 & & & & 0 & & & \\
a_{-n}^{21} & & & & a_{-n}^{22} & & & \\
\vdots & a_{-n}^{21} & & & \vdots & a_{-n}^{22} & & \\
\vdots & \vdots & \ddots & & \vdots & \vdots & \ddots & \\
\vdots & \vdots & & a_{-n}^{21} & \vdots & \vdots & & a_{-n}^{22} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{n-1}^{21} & a_{n-2}^{21} & \cdots & a_{n-r / 2}^{21} & a_{n-1}^{22} & a_{n-2}^{22} & \cdots & a_{n-r / 2}^{22}
\end{array}\right)
$$

Figure 3: A CMC surface of revolution (the left picture) and CMC cylinders (the right pictures).

5 Some remarks

- 1984, D. Hoffman started to use computer graphics for studying surfaces. (W. Meeks and he proved the embeddedness of Costa minimal surface [5].)
- 1998, D. Lerner and I. Sterling made the first implementation of Dorfmeister-Pedit-Wu method [6].

6 Related softwares

- JavaView (which is used for a visualization of java version CMC-Lab). http://www.javaview.de/
- GeomView (which is a graphics viewer corresponding to various formats). http://www.geomview.org/
- Mesh (which construct minimal surfaces).
http://www.msri.org/publications/sgp/jim/software/
- Surface evolver (which is a visualization tool for surfaces using variational problems). http://www.susqu.edu/facstaff/b/brakke/evolver/

References

[1] A. I. Bobenko, Constant mean curvature surfaces and integrable equations, Russian Math. Surveys 46:4, 1-45 (1991).
[2] J. Dorfmeister, F. Pedit and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6(4) (1998), 633-668.
[3] J. Dorfmeister, G. Haak, Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), no. 2, 335-364.
[4] S. Fujimori, S-P. Kobayashi, W. Rossman, A basic introduction to loop group methods for constant mean curvature surfaces, http://www.math.sci.kobe-u.ac.jp/HOME/wayne/wayne-e.html.
[5] D. Hoffman and W. H. Meeks III, A complete embedded minimal surface in R^{3} with genus one and three ends, J. Differential Geom. 21 (1985), 109-127.
[6] D. Lerner, I. Sterling, Holomorphic potentials, symplectic integrators and CMC surfaces, Elliptic and parabolic methods in geometry (Minneapolis, MV, 1994), 73-90, A K Peters, Wellesley, MA, 1996.
[7] U. Pinkall and I. Sterling, On the classification of constant mean curvature tori, Annals of Math. 130, 407-451 (1989).
[8] A. Pressley and G. Segal, Loop Groups, Oxford Mathematical Monographs, Oxford University Press 1986.

