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1 Introduction

In this note, we will give a instruction for CMC-Lab software. CMC-Lab was
programmed by Nicolas Schmitt for a research of constant mean curvature
surfaces around 2000 — 2001.

2 Installation of CMC-Lab

One can download CMC-Lab software from the following web page:

1. Linux version (Redhat, Debian etc...)
= http://www.gang.umass.edu/software/cmclab/index.html

2. Java version
= http://tmugs.math.metro-u.ac.jp/javacmclab030926.zip

Figure 1: CMC bubbletons in R?, S and H?3.



The detailed instruction for the installation of CMC-Lab is given in

e Installation guide for linux version

http://www.math.sci.kobe-u.ac.jp/~ kobayasi/GPS /tex_html files/ GPSCMCLab/

e Linux version is more advantageous than java version, however java
version is the only choice for windows users.

3 Dorfmeister-Pedit-Wu method

In this section, we will give a brief explanation of theory of Dorfmeister,
Pedit, Wu ([2]) to construct CMC surfaces, which is used for the CMC-Lab
software.

First, we identify R? and su(2) = ImH as follows, where H is the quater-
nion.

R? < su(2) = {A € Mat(2,C) ; A'=-A4}

Therefore, for example, we have the correspondence between R? and su(2)
as follows:

Adjoint group actions on su(2) by SU(2) &L Rotations of R3 by SO(3).

Now we give a brief explanation of Dorfmeister, Pedit, Wu methods. The
methods can be divided as the following 4 steps. Details can be found in [2]
and [3].

Stepl : Let D be a simply connected domain in C.

O

n(z,A) = Z ANz
n=—1

o 2 x 2 matrix differential form and Tr n = 0.

@)

diagonal even in A, off-diagonal odd in A.

o

A; are holomorphic with respect to z € D.
detA_1 7é 0.

O

Step2 : Solve the ODE dC = Ch.



Step3d : Iwasawa decomposition: C'= FW

o F = F(z ) is unitary for all z € ®,\ € S*.

o W, = i W A"

n=0

Step4 (Sym—Bobenko Formula)
= = {(AKE) P+ F5 (6 %) Py

7, is a CMC-immersion from ® to R?.
Every CMC-immersion can be obtained this way.

In fact, the solution C' is in loop group of SL(2,C), which is a infinite di-
mensional Lie group. We do not give the definitions of loop groups here, and
refer the article [2] to readers. Analogously F' is in loop group of SU(2), and
W, is in plus loop group of SL(2,C). We also refer the article [1] to readers
for “Sym-Bobenko formula” in Step 4. We use the notation ASL(2,C) (resp.
ASU(2) and ATSL(2,C)) for the loop group of SL(2,C) (resp. loop group
of SU(2) and the plus loop group of SL(2,C)).

4 Algorithm for CMC-Lab

For the implementation of Dorfmeister, Pedit, Wu method, there are two
main issues, which are Step 2 and Step3 in the previous section. In Step2,
dC' = Cnis afirst order 2 x2 matrix differential equation. Thus we have many
algorithms, for example Runge-Kutta method. Therefore we concentrate
the algorithm for Step 3, which is Iwasawa decomposition. We quote the
following lemma from [4].

Lemma 1 Set
W = span{C*, \C*,--- ,C? \C?,---} .

Let C € ASLy(C), and C*, C? be the columns of C. If z,y € W N (AW),
then

(,9)c2 = (x,9)g and dim(W N (AW)H) =2,
where

1 d\

(90 ?/) 2—m o (%Z/)cZT .



\ Wy

Figure 2: genus one CMC surfaces (the left two pictures) and a periodic
CMC surface (the right picture).

Then we will state the main theorem.
theorem 2 Set
P7 . C7 — AW (projection to \W ) .

and

P=(P',P%.
Then P = CBy for some loop B, with positive Fourier terms. Set
G=(GGH=C-P .
Take unitary part of G via Hilbert norm, that is, G = F' By

_ (16" (@*,G/|G1)
By = ( 0 |G2—Gl/!Glr<G2,Gl/lGll>l>

Then C = F - Bo(I — By)™! is the Iwasawa decomposition of C.

Proof 1 Clearly, G is in WN(AW)*, thus Lemma 1 implies that the columns
G' and G? are the basis of W N (AW)L. Then we can do the Gram-Schmidt
orthogonalization for G in C?. 0J

Theorem 2 implies that if one can find the projection P, then one can com-
pute the Iwasawa decomposition.



4.1 Algorithm of Step 3

In this subsection, we will give the algorithm for Step 3 in previous section.
Next lemma is important for a computation of the projection P defined in
previous section.

Proposition 3 Set
A=A{ay, - ,a,} :a basis for C".
Take 0 <r <n,
p:C" — C" : projection to the subspace spanned by {ai,--- ,a,},

A= (ay, - ,a,) € SL(2,C) ,
and

~ I, O
P = (0 On—r) € Mat(n,C) .

Then p can be written as follows:
1 APAY,
2 UPU!, where A = UT is the QR-decomposition of A.

Proof 2 The matriz P is the projection to the subspace spanned by {e1, - ,e.}
of the space spanned by the standard basis {e1,--- ,e,} for C". Therefore
one can write the projection p to the subspace spanned by {ai,--- ,a,} of the
space spanned by {ai, - ,a,} for C" as 1. The matrix T commute P, thus
APA™' = UTPT U =UPU'. And U is unitary implies that U~ = U*,
O

Computing a inverse matrix takes long time for a numerical computation.
Therefore we will use the expression 2 of Proposition 3 as the projection p.



Now we will apply Proposition 3 for the actual object. We take a finite
part of A € ASL(2,C) as follows:

n 11y Kk n 12y k

A= (Zk:na§1/\k Zk:%agz/\k
n n

YR _apr ANV XN aitA

) € SL(2,C).

Set r is even, r/2 < n,
S Yr_ ailaP 0 — ¥n_apAk
LR O 7D L A O VN O U

and
AW = span{/\al,--- N2, Aag, -+ ,)\T/Qag} )

Then the projection p can be computed by Proposition 3 as follows:

t

(Uo, 0)P(Us,0)

T 0 . o
where (A, 0) = (Uy, 0) (O o) 18 QR~decomposition of Ay.
0 0
11 12
a—n a—n
11 : 12
all, D a?
11 : : 12
att : : a?,
11 1 11 12 12 12
A — Up1 Opo " Qp_pyy | Qpy Ao """ Uy pg
0=
0 0
21 22
a—n a—n
21 22
a—n a—n
21 : 22
a* : a*,
21 21 21 22 22 22
Ap—1 Qp_o - a’n—r/2 ap_1 Qu_o - an—r/Q
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Figure 3: A CMC surface of revolution (the left picture) and CMC cylinders
(the right pictures).

5 Some remarks

e 1984, D. Hoffman started to use computer graphics for studying sur-
faces. (W. Meeks and he proved the embeddedness of Costa minimal
surface [5].)

e 1998, D. Lerner and I. Sterling made the first implementation of
Dorfmeister-Pedit-Wu method [6].

6 Related softwares

e JavaView (which is used for a visualization of java version CMC-Lab).
http://www.javaview.de/

e GeomView (which is a graphics viewer corresponding to various for-
mats). http://www.geomview.org/

e Mesh (which construct minimal surfaces).
http://www.msri.org/publications/sgp/jim/software/

e Surface evolver (which is a visualization tool for surfaces using varia-
tional problems). http://www.susqu.edu/facstaff/b/brakke/evolver/
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